摘要
由于地球引力和大气阻力等因素造成的模型不确定性,使常规滤波方法用于卫星编队飞行相对运动估计时精度不高。为克服这种影响,提出了一种融合高斯过程回归(Gaussian process regression,GPR)的无模型无迹粒子滤波(model-free unscented particle filter,MF-UPF)方法。对近圆轨道的双星编队问题,新方法通过高斯过程回归对已有的量测数据学习建立相对运动模型,有效地避免了模型不确定性造成的滤波性能下降。仿真对比验证了无模型无迹粒子滤波在编队飞行相对运动估计中的优越性。
Normal filter algorithms cannot achieve high precision due to the modeling uncertainty caused by the earth gravity and atmospherical drag. A model-free unscented particle filter (MF-UPF) combined with Gaussian process regression is presented to overcome modelling uncertainty. Gaussian process is used to establish a relative motion model of formation flying satellites in near-circular orbits using training data, which efficiently avoids degradation of filtering performance. Simulations and comparisons validate the superiority of MFUPF for the relative motion estimation of formation flying.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2012年第6期1215-1219,共5页
Systems Engineering and Electronics
基金
国家高技术研究发展计划(863计划)(2010AA7045003)资助课题
关键词
近圆轨道
编队飞行
建模不确定
粒子滤波
高斯过程回归
near-circular orbit formation flying modeling uncertainty particle filter(PF) Gaussian process regression(GPR)