期刊文献+

基于无模型无迹粒子滤波的编队卫星相对运动估计

Estimation of formation spacecraft relative motion based on model-free unscented particle filter
下载PDF
导出
摘要 由于地球引力和大气阻力等因素造成的模型不确定性,使常规滤波方法用于卫星编队飞行相对运动估计时精度不高。为克服这种影响,提出了一种融合高斯过程回归(Gaussian process regression,GPR)的无模型无迹粒子滤波(model-free unscented particle filter,MF-UPF)方法。对近圆轨道的双星编队问题,新方法通过高斯过程回归对已有的量测数据学习建立相对运动模型,有效地避免了模型不确定性造成的滤波性能下降。仿真对比验证了无模型无迹粒子滤波在编队飞行相对运动估计中的优越性。 Normal filter algorithms cannot achieve high precision due to the modeling uncertainty caused by the earth gravity and atmospherical drag. A model-free unscented particle filter (MF-UPF) combined with Gaussian process regression is presented to overcome modelling uncertainty. Gaussian process is used to establish a relative motion model of formation flying satellites in near-circular orbits using training data, which efficiently avoids degradation of filtering performance. Simulations and comparisons validate the superiority of MFUPF for the relative motion estimation of formation flying.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第6期1215-1219,共5页 Systems Engineering and Electronics
基金 国家高技术研究发展计划(863计划)(2010AA7045003)资助课题
关键词 近圆轨道 编队飞行 建模不确定 粒子滤波 高斯过程回归 near-circular orbit formation flying modeling uncertainty particle filter(PF) Gaussian process regression(GPR)
  • 相关文献

参考文献15

  • 1Alfriend K T, Gurfil P, Vadali S R. Spacecraft formation fly- ing: dynamics, control, and navigation[M]. Kidlington: But- terworth-Heinemann, 2009 : 83 - 122.
  • 2McLoughlin T H, Campbell M. Distributed estimate fusion filter for large spacecraft formations[C]//Proc, of the AIAA Guid- ance, Navigation and Control Conference and Exhibit, 2008.
  • 3Yamada K, Shima T, Yoshikawa S. Effect of J2 perturbations on relative spacecraft position in near-circular orbits[J]. Journal of Guidance, Control, and Dynamics, 2010, 33 (2) : 584 - 590.
  • 4陈根社,文传源,陈新海.航天器相对运动估计的一种并行推广卡尔曼滤波方法[J].航空学报,1996,17(1):43-51. 被引量:2
  • 5Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Pro ceedings, Part F : Radar and Signal Processing, 1993, 140 (2):107 -113.
  • 6Gustafsson F. Particle filter theory and practice with positioning applications[J]. IEEE Aerospace and Electronic Systems Mag- azine, 2010, 25(7):53-81.
  • 7Cheng Y, Crassidis J L. Particle filtering for attitude estimation using a minimal local-error representation[J]. Journal of Guid- ance, Control, and Dynamics, 2010, 33(4):1305- 1310.
  • 8Hartikainen J, Sarkka S. Kalman filtering and smoothing solu- tions to temporal Gaussian process regression models[C]//Proc. of the IEEE 20th International Workshop on Machine Learning for Signal Processing, 2010:379 - 384.
  • 9Rasmussen C E, Williams C K I. Gaussian processes for ma- chine learning[M]. Cambirdge.. The Massachusetts Institute of Technology Press,2005 : 7 - 32.
  • 10Sidi M J. Spacecraft dynamics and control : a practical engineer ing approach[M]. Cambridge: Cambridge University Press,1997.

二级参考文献4

  • 1陈根社,博士学位论文,1994年
  • 2Chui C K,Kalman filtering with Real-Time Applications,1991年
  • 3陈国良,VLSI计算理论与并行算法,1991年
  • 4陈新海,最佳估计理论,1987年

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部