期刊文献+

大气低频噪声混合模型的MCMC参数估计 被引量:5

Parameter estimation for mixture model of atmospheric noise through MCMC method
下载PDF
导出
摘要 大气噪声是低频通信中的主要干扰,且具有严重非高斯分布特性,对非高斯噪声模型的参数估计对于提高低频接收机的性能具有重要意义。设计了估计非高斯混合模型参数的马尔可夫链蒙特卡罗(Markov chainMonte Carlo,MCMC)算法,该算法通过构建贝叶斯层次模型,利用Gibbs抽样和M-H抽样更新迭代参数。利用乘积特性,将稳定分布作为等价的高斯分布来处理,并在层次模型中设置多个额外参数,以增强其灵活性。仿真实验与实测数据表明,该算法迭代收敛快、精度高,有很高的实用价值。 Atmospheric noise is the main interference in a low-frequency communication system, which is highly impulsive. So the work for estimating the parameters of model of non-Gaussian noises is of great significance to improve the performance of the low-frequency receiver. This paper proposes a Markov chain Monte Carlo (MCMC) method to estimate the parameters of a mixture model. The method updates the parameters through a Gibbs sampler and M-H algorithm, which are based on the Bayesian hierarchical model. The a stable distribution in the mixture model is equivalent to the normal distribution by using the product properties. An extra layer is added to the hierarchy for full flexibility. The result shows that the new method has a good performance, high precision and can be excellently applied in practice.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第6期1241-1245,共5页 Systems Engineering and Electronics
基金 国防预研基金资助课题
关键词 混合模型 马尔可夫链蒙特卡罗 非高斯噪声 Α稳定分布 mixture model Markov chain Monte Carlo (MCMC) non-Gaussian noise stable distrihution
  • 相关文献

参考文献13

  • 1Abraham D A. Detection-threshold approximation for non- Gaussian backgrounds [J]. IEEE Journal of Oceanic Engineer ing, 2010, 35(8): 335-341.
  • 2Goken C, Gezici S, Arikan O. Optimal signaling and detector design for power constrained binary communications systems o- ver non-Gaussian channels [J]. IEEE Trans. on Communica- tions Letters, 2010, 14(2) :100- 111.
  • 3Middleton D. Non-Gaussian noise models in signal processing for teleeommunications: new methods and results for class A and class B noise models[J]. IEEE Trans. on Information Theory, 1999, 45(4):1129-1149.
  • 4Stopler D, Zamir R. Capacity and error probability in single tone and multitone multiple access over an impulsive channel[J].IEEE Trans. on Communication, 2011, 49(3) :506 - 517.
  • 5Schulte S. A fuzzy impulse noise detection and reduction method[J]. IEEE Trans. on Image Processing, 2006,15 (5) : 1153 - 1162.
  • 6Lind L, Mufti N. Efficient method for modeling impulse noise in a communication system [J]. Electronics Letters, 1996, 32(3) : 1440 - 1441.
  • 7Ekrem E, Koca M. Robust ultra-wideband signal acquisition[J]. IEEE Trans. on Wireless Communications, 2008, 7(11) : 4656 -4669.
  • 8Nikias C L, Shao M. Signal processing with alpha-stable dis tribution and applications[M]. New York: Wiley, 1995.
  • 9Wang X D, Poor H V. Robust multi-user detection in non- Gaussian channels [J]. IEEE Trans. on Signal Processing, 1999, 47(2) :289 - 305.
  • 10Samorodnitsky G, Taqqu M. Stable non-Gaussian random process : stochastic models with infinite variance [M]. New York: Chapman & Ha11,1994.

同被引文献64

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部