期刊文献+

基于改进基本图像特征直方图的纹理分类算法 被引量:2

Texture classification based on improved basic image features histogram
下载PDF
导出
摘要 提出了一种改进的基本图像特征(basic image feature,BIF)直方图纹理分类算法。首先在4个尺度上分别确定图像中每个像素点对应的BIF,然后在每个尺度上分别提取6维直方图特征及3维高阶统计特征共36维特征,最后使用支持向量机(support vector machine,SVM)作分类器对实验图像进行训练和分类。实验表明,所提方法降低了算法的计算复杂度和运行时间,对噪声有较好的鲁棒性。 An improved method of basic image features (BIF) histogram is proposed. Firstly, correspond ing BIF of every pixel in the image is respectively computed in four scales. Secondly, six histogram features and three high order statistical features are extracted respectively in every scale. Finally, the support vector machine (SVM) is applied for training and classifying the texture images. Experiment results show that the proposed method can reduce the computing complexity and consuming time, meanwhile, it is robust to noise.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第6期1272-1277,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60970142 60903221)资助课题
关键词 图像处理 纹理分类 基本图像特征 最近邻算法 支持向量机 image processing texture classification basic image feature (BIF) nearest neighbor algorithm support vector machine (SVM)
  • 相关文献

参考文献18

  • 1Manthalkar R, Briswas P K, Chatterji B N. Rotation and scale in- variant texture features using discrete wavelet packet transform[J]. Pattern Recognition Letters, 2003,24(14) : 2455 - 2462.
  • 2杨蕊红,潘泉,程咏梅.小波不变矩在图像识别中的应用研究[J].计算机应用研究,2005,22(11):239-240. 被引量:4
  • 3Charalampidis D, Kasparis T. Wavelet-based rotational rough- ness features for texture classification and segmentation [J]. IEEE Trans. on Image Processing, 2002,11 (8) : 825 - 837.
  • 4蒋金山,余英林.用支持向量机实现尺度和旋转不变性纹理分类[J].华南理工大学学报(自然科学版),2004,32(5):26-29. 被引量:6
  • 5韩光,赵春霞.基于方向-频率分解的旋转不变性纹理分类[J].光子学报,2010,39(2):352-356. 被引量:3
  • 6Crosier M, Griffin L D. Using basic image features for texture classifieation[J]. International Journal of Computer Vision, 2010,88(3) :446 -470.
  • 7Griffin L D, Lillholm M, Crosier M, et al. Basic image features (BIFs) arising from approximate symmetry type[C] //Proc. of the 2nd International Conference of Scale Space and Variation- al Methods in Computer Vision ,2009 : 343 - 355.
  • 8Crosier M, Griffin I. D. Texture classifycation with a dictionary of basic image features[C] // Proc. of the IEEE Conference on Computer Vision and Pattern Recognition ,2008:1 -7.
  • 9Griffin L D, Lillholm M. Feature category systems for 2nd order local image structure induced by natural image statistics and oth- erwise[C]//Proc, of the .SPIE, 2007, doi: 10. 1117/12. 714560.
  • 10Griffin L D, Lillholm M. Symmetry sensitivities of derivative- of Gaussian filters[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010,32(6) : 1072 - 1083.

二级参考文献61

  • 1杜培军,方涛,唐宏,陈雍业.高光谱遥感信息中的特征提取与应用研究(英文)[J].光子学报,2005,34(2):293-298. 被引量:38
  • 2吴晏,丁明跃,彭嘉雄.基于图像直方图的一维不变矩研究[J].华中理工大学学报,1996,24(2):66-68. 被引量:6
  • 3业宁,王迪,窦立君.信息熵与支持向量的关系[J].广西师范大学学报(自然科学版),2006,24(4):127-130. 被引量:10
  • 4施建宇,潘泉,张绍武,邵壮超,姜涛.基于多特征融合的蛋白质折叠子预测[J].北京生物医学工程,2006,25(5):482-485. 被引量:2
  • 5杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 6Meyer F G and Coifman R R. Directional image compression with Brushlets[C]. Proceedings of the IEEE-SP International Symposium. Paris, France, June 1996: 18-21.
  • 7Cand~s E J. Ridgelets: theory and applications[D]. [Ph.D. dissertation]. Department of Statistics, Stanford University, 1998.
  • 8Candes E J and Donoho D L. Curvelets and curvilinear integrals[R]. Department of Statistics, Stanford University, CA, Tech. Rep., Dec. 1999.
  • 9Do M N and Vetterli M. The Contourlet transform: An efficient directional multiresolution image representation[J]. IEEE Trans. Image on Processing, 2005, 14(12): 2091-2106.
  • 10Velisavljevic V, Beferull-Lozano B, and Vetterli M, et al.. Directionlets: anisotropic multi-directional representation with separable filtering[J]. IEEE Trans. Image on Processing. 2006, 15(7): 1916-1933.

共引文献31

同被引文献22

  • 1秦定宇,王敬东,李鹏.图像融合中小波基的选择分析[J].光电子技术,2006,26(3):203-207. 被引量:14
  • 2贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,24(1):10-13. 被引量:225
  • 3张学工.模式识别[M].北京:清华大学出版社,2010.
  • 4Jain,Jitendra.Modified Chain Code Histogram Feature for Handwritten Character Recognition[J].Advances in Computer Science and Information Technology on Networks and Communications.Springer Berlin Heidelberg,2012,84:611-619.
  • 5Vezzani,Roberto,Davide Baltieri,Rita Cucchiara.HMM based action recognition with projection histogram features[J].Recognizing Patterns in Signals,Speech,Images and Videos.Springer Berlin Heidelberg.2010,6388:286-293.
  • 6Wilamowski B M.Neural network architectures and learning algorithms[J].Industrial Electronics Magazine,IEEE,2009,3(4):56-63.
  • 7Ran Y,Xiong G,Li S,et al.Study on deformation prediction of landslide based on genetic algorithm and improved BP neural network[J].Kybernetes,2010,39(8):1245-1254.
  • 8Wong W E,Qi Y.BP neural network-based effective fault localization[J].International Journal of Software Engineering and Knowledge Engineering,2009,19(4):573-597.
  • 9孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1074
  • 10刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2009,14(4):622-635. 被引量:430

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部