期刊文献+

基于自适应共生进化的自主体快速强化学习研究 被引量:2

Autonomous Agent Fast Reinforcement Learning Method Based On Adaptive Symbiotic Evolution
下载PDF
导出
摘要 文章研究了一类基于自适应共生进化模型的自主体构造方法,提出了基于自适应共生进化算法(ASE)的一种进化强化学习方法,该方法不仅可以高效地进行神经网络决策系统的设计,而且在多自主体组成的自律系统的群体行为进化中可快速学习而收敛,并且通过多样度调节维持了群体多样性,克服了未成熟收敛现象。研究者将该方法用于人工生物中求偶通讯规范的研究,通过在环境中的生存和行为学习,雌雄个体都可有效地学习到成功的求偶通讯规范。 A sort of autonomous agent construction method based on adaptive symbiotic evolutionary model was proposed, and by using adaptive symbiotic evolution algorithm (ASE) as an evolutionary reinforcement learning method, Which can design neural network decision making systems effectively. while at the same time this method can accelerate the learning and convergence speed in the behavior evolution problem of multi agent autonomous system, and it also prevents premature convergence and promotes population diversity. It uses this model in the study of artificial creature matching criterion, through an efficient living and behavior learning period in the environment, the male and female individuals will all be able to learn a successful matching communication strategy.
出处 《计算机工程与应用》 CSCD 北大核心 2000年第3期25-29,36,共6页 Computer Engineering and Applications
基金 国家自然科学基金!项目号:69671029
关键词 自主体 自适应共生进化 强化学习 神经网络 Autonomous agent, Adaptive Symbiotic Evolution, Reinforcement learning
  • 相关文献

参考文献12

  • 11.Dorigo M,Colombetti M. Robot shaping developing autonomous agents through learning. Artificial Intelligence,1994;71(2):321-370
  • 22.Steels L. Building agents with autonomous behavior systems. In:Steels LR Brooks.The `artificial life' route to `artificial intelli- gence',Building situated embodied agents,1994
  • 33.Dautenhahn K. Investigations into internal and external aspects of dynamic agent-environment couplings.in Proc. Dynamics,Syn-ergeticsAutonomous Agents Conference,March 2-5,Switzerland,Gstaad,1997
  • 44.Sutton R S. Temporal credit assignment in reinforcement lear- ning. Univ. Of Mass. Ph.D. dissertation.COINS TR 84-2Amherst,MA,1984
  • 55.Barto A G,Anandan P. Pattern recognizing stochastic learning automata. IEEE Trans.on Systemman and cybernetics,1985;15:360-375
  • 66.Angeline P. An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans. on Neural Networks,1994;5(1):54-65
  • 77.Whitley D. Genetic reinforcement learning for neurocontrol pro- blems. Maching Learning,1993;13:259-284
  • 88.Ackley D,Littman D. Interaction between learning and evolu- tion. Artificial Life II,Addison Wesley1992
  • 99.Moriarty D Miikkulainen R. Efficient reinforcement learning through symbiotic evolution. Machine learning,1996;22:11-32
  • 1010.Gomez F,Miikkulainen R. Incremental Evolution of complex general behavior. Adaptive Behavior,1997;5(3/4):317-342

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部