期刊文献+

Stable Water-dispersed CdTe Nanocrystals Dependent on Stoichiometric Ratio of Cd to Te Precursor

Stable Water-dispersed CdTe Nanocrystals Dependent on Stoichiometric Ratio of Cd to Te Precursor
原文传递
导出
摘要 The improved properties of CdTe nanocrystals (NCs) synthesized by hydrothermal method were introduced. The experimental results indicated that the NCs properties could be dramatically influenced by means of changing Cd-to-Te molar ratio (the molar ratio of CdC12 and NaHTe in the precursor) of the MPA-capped CdTe NCs. With the increase of the ratio from 2 : 1 to 10 : 1, the formation time of near-infrared-emitting CdTe NCs was shortened. In particular, high Cd-to-Te molar ratio brought about MPA-capped CdTe NCs of superior radical oxidation-resis- tance and photostability. As a result, the optimum ratio was found to be 8 : 1 or 10 : 1 in the study in order to efficiently attain stable, water-dispersed CdTe NCs. The improved properties of CdTe nanocrystals (NCs) synthesized by hydrothermal method were introduced. The experimental results indicated that the NCs properties could be dramatically influenced by means of changing Cd-to-Te molar ratio (the molar ratio of CdC12 and NaHTe in the precursor) of the MPA-capped CdTe NCs. With the increase of the ratio from 2 : 1 to 10 : 1, the formation time of near-infrared-emitting CdTe NCs was shortened. In particular, high Cd-to-Te molar ratio brought about MPA-capped CdTe NCs of superior radical oxidation-resis- tance and photostability. As a result, the optimum ratio was found to be 8 : 1 or 10 : 1 in the study in order to efficiently attain stable, water-dispersed CdTe NCs.
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2012年第5期1031-1039,共9页 中国化学(英文版)
关键词 quantum dots FLUORESCENCE Cd-to-Te molar ratio oxidation PHOTOOXIDATION quantum dots, fluorescence, Cd-to-Te molar ratio, oxidation, photooxidation
  • 相关文献

参考文献37

  • 1Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Nature 1994, 370, 354.
  • 2Schlamp, M. C.; Peng, X. G.; Alivisatos, A. P. J. Appl. Phys. 1997, 82, 5837.
  • 3Barnham, K.; Marques, J. L.; Hassard, J.; O'Brien, P. Appl. Phys. Lett. 2000, 76, 1197.
  • 4Tang, Z. Y.; Kotov, N. A.; Giersig, M. Science 2002, 297, 237.
  • 5Wang, M. F.; Kumar, S.; Lee, A.; Felorzabih, N.; Shen, L.; Zhao, F.; Froimowicz, P.; Scholes, G. D.; Winnik, M. A. J. Am. Chem. Soc. 2008, 130, 9481.
  • 6Agrawa, M.; Rubio-Retam, J.; Zafeiropoulos, N. E.; Gaponik, N.; Gupta, S.; Cimrova, V.; Lesnyak, V.; L6pez-Cabarcos, E.; Tzavalas, S.; Rojas-Reyna, R.; Eychmtlller, A.; Stature, M. Langmuir 2008, 24, 9820.
  • 7Bruchez, M. Jr.; Moronne, M,; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.
  • 8Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W.; Nie, S. M. Nature Biotechnol. 2004, 22, 969.
  • 9Zheng, Y. G.; Gao, S, J.; Yin, J. Y. Adv. Mater. 2007, 19, 376.
  • 10Hu, M.; Yan, J.; He, Y.; Lu, H. T.; Weng, L. X.; Song, S. P.; Fan, C. H.; Wang, L. H. ACSNano 2010, 4, 488.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部