期刊文献+

利用径向基函数重建飞机表面的Cp值曲面 被引量:4

Reconstructing the Surface of Cp Value Defined on the Surface of Aircraft by Using Radial Basis Functions
下载PDF
导出
摘要 利用风洞实验获得的复杂飞机表面上部分散乱点的Cp值,重建出整张曲面上的Cp值是气动力学分析中的一个难题.该文提出一种新的重建Cp值曲面方法,先将形状复杂的飞机表面转化为与其拓扑等价的规则曲面,再利用径向基函数对这些散乱点的值进行光滑插值加密计算重建出全局值.通过大量标准函数测试以及实际应用证明,该方法简单、准确、有效. It is a difficult problem in the field of aerodynamics to reconstruct the global Cp values on the whole surface using some scattered Cp values located on the surface of an aircraft given by wind tunnel test. In this article, a new algorithm is presented. The algorithm is finding a regular surface that is topologically equivalent to the irregular aircraft surface followed by interpolating smoothly those scattered data by using radial basis functions. Then, the global Cp values are evaluated. The results of many test functions and applications to the aircraft proved that the method is simple and effective.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2000年第2期101-104,共4页 Journal of Computer-Aided Design & Computer Graphics
关键词 空气动力学 径向基函数 Cp值曲面 飞机设计 CAD aerodynamics, topologically equivalent, radial basis functions, surface reconstruction
  • 相关文献

参考文献3

  • 1唐月红,南京航空航天大学学报,1996年,28卷,25期,614页
  • 2Ding Qiulin,Surface Engineering Geometry for Computer aided Design and Manufacture,1993年,108页
  • 3唐荣锡,计算机辅助飞机制造,1993年,50页

同被引文献24

  • 1王金生,韩臻,施寅,尹直诺.几种经典网格细分算法的比较[J].计算机应用研究,2004,21(6):139-141. 被引量:11
  • 2周廷方,冯结青,肖春霞,彭群生.基于层次B样条的网格模型变形技术[J].计算机辅助设计与图形学学报,2006,18(3):443-450. 被引量:7
  • 3刘大诚,王玉林.隐函数曲面在车身造型中的应用[J].山东理工大学学报(自然科学版),2006,20(1):39-42. 被引量:2
  • 4Dwyer R A. A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations [ J ]. Algorithmica,1987, 2(2): 137-151.
  • 5Macedonio G, Pareschi M T. An Algorithm for the Triangulation of Arbitrarily Distributed Points: Applications to Volume Estimate and Terrain Fitting [J]. Computer & Geosciences, 1991, 17(7):859-874.
  • 6Sloan S W. A Fast Algorithm for Constructing Delaunay Triangulations in the Plane [J]. Advanced Engineering Software, 1987, 9(2): 34-5.
  • 7Green P J , Sibson R. Computing Dirichlet Tesselation in the Plane[J]. Comput. J., 1977, 21(2):168-173.
  • 8Fortune S. A Sweepline Algorithm for Voronoi Diagrams[J].Algorithmica, 1987, 2(2): 153-174,
  • 9Katsuaki Koike, Setsuro Matsuda, Bin Gu. Evaluation of Interpolation Accuracy of Neural Kriging with Application to Temperature-Distribution Analysis[J]. Mathematical Geology, 2001, 33(4) :421-448.
  • 10侯景儒 尹镇南 李维明 等.实用地质统计学[M].北京:地质出版社,1998..

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部