期刊文献+

随机间距稀疏三元循环相位掩膜矩阵可压缩成像

Sparse Trinary Circulant Measurement Matrices with Random Spacing in Compressive Imaging
下载PDF
导出
摘要 可压缩成像是一种新兴的基于压缩感知理论的新成像技术,其核心思想是如果空间场景是稀疏或可压缩,那么它可以用远少于经典的Nyquist采样数目的测量值捕获的足够信息重构原场景;构建合适的测量矩阵并易于使用物理实现压缩感知理论中对于图像的随机线性测量是可压缩成像理论实用化的关键之一。该文在研究Bernoulli和Circulant矩阵的基础上,提出一种新的随机间距稀疏三元循环相位掩膜矩阵。模拟实验结果表明,在可压缩双透镜成像系统单次曝光下,与Bernoulli和Bernoulli-Circulant相位掩膜矩阵相比,新相位掩膜矩阵的成像信噪比与之相当;但是该文提出的矩阵随机独立变元个数和非零元个数显著减少,易于数据存储与传输;更重要的是物理上更容易实现,重构时间是只有原来的约20%~50%。新的相位掩膜矩阵的研究对于可压缩成像理论的实际应用具有重要的意义。 Compressive imaging is a novel imaging method based on compressive sensing theory,the key idea is that it can reconstruct original scene precisely with far fewer measurements than Nyquist samples if the scene is sparse/compressible;Constructing an appropriate measurement matrix easy to realize random linear measurement of an image is one of the key points of practical compressive sensing.In this paper,analyzing the existing Bernoulli and Circulant matrices,a novel sparse trinary circulant measurement matrix with random spacing for phase mask is proposed.Simulation results show that novel phase mask matrices,compared to Bernoulli and Ber-noulli-Circulant(BC) phase mask matrices,have the same signal-to-noise ratio;But with the number of inde-pendent random variables and the number of non-zeros entries a dramatically reduction,which is more conducive to data transmission and storage;more importantly that is easy to hardware implementation and the reconstructed time is only about 20%~50% of that of original matrices,which has a significance effects on practical compressive sensing.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第6期1374-1379,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(20113401130001) 安徽高校省级自然科学研究项目(KJ2011B131) 安徽大学青年基金(kjqn1010)资助课题
关键词 压缩感知 可压缩成像 稀疏三元循环 相位掩膜矩阵 Compressive Sensing(CS) Compressive imaging Sparse trinary circulant Phase mask matrix
  • 相关文献

参考文献15

  • 1Cand~s E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 2Candes E J, Romberg J K, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
  • 3Candes E J and Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 2007, 23(3): 969-985.
  • 4Candes E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
  • 5Bajwa W U, Haupt J D, Raz G M, et al.. Toeplitz-structured compressed sensing matrices[C]. Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, Wisconsin, 2007: 294-298.
  • 6Rauhut H. Circulant and Toeplitz matrices in compressed sensing[C]. Proceedings of the 2009 Workshop on Signal Processing with Adaptive Sparse Structured Representations, Saint-Malo, France, 2009.
  • 7DeVore R. Deterministic constructions of compressed sensing matrices[J]. Journal of Complexity, 2007, 23(4-6): 918-925.
  • 8Haupt J, Bajwa W U, Raz G, et al.. Toeplitz compressed sensing matrices with applications to sparse channel estimation[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5862-5875.
  • 9Stern A and Javidi B. Random projections imaging with extended space-bandwidth product[J]. Journal of Display Technology, 2007, 3(2): 315-320.
  • 10张成,杨海蓉,韦穗.循环-托普利兹块相位掩模可压缩双透镜成像[J].光学学报,2011,31(8):98-103. 被引量:14

二级参考文献19

  • 1D. Takhar, J. N. Laska, M. B. Wakin et al.. A new compressive imaging camera architecture using optical domain compression [C]. SPIE, 2006, 6065:606509.
  • 2M. F. Duarte, M. A. Davenport, D. Takharetal.. Single-pixel imaging via compressive sampling [J].IEEE Signal Processing Magazine, 2008, 25(2) : 83-91.
  • 3P. T. Boufounos, R. G. Baraniuk. 1 bit compressive sensing [C]. Conf. Information Sciences and Systems (CISS), 2008, 16--21.
  • 4A. Stern, B. Javidi. Random projections imaging with extended space-bandwidth product [J]. J. Display Technology, 2007, 3(3): 315-320.
  • 5R. F. Marcia, R. M. Willett. Compressive coded aperture superresolution image reconstruction [C]. IEEE International ConFerence on Acoustics, Speech and Signal Processing 2008 (ICASSP 2008), 2008, 833-836.
  • 6Roummel F. Marcia, Zachary T. Harmany, Rebecca M. Willett. Compressive coded aperture imaging [C]. SPIE, 2009, 7246- 72460G.
  • 7R. Baraniuk, P. Steeghs. Compressive radar imaging [C]. 2007 IEEE Radar Conference, 2007, 128--133.
  • 8M. A. Herman, T. Strohmer. High resolution radar via compressed sensing [J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275- 2284.
  • 9W. U. Bajwa, J. D. Haupt, G. M. Raz et al.. Toeplitz- structured compressed sensing matrices [E]. Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, 2007, 294-298.
  • 10H. Rauhut. Circulant and Toeplitz matrices in compressed sensing[C]. Proc. SPARS'09, 2009, http;//arxiv, org/abs/ O9O2. 4394.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部