期刊文献+

基于压缩感知的超宽带信道估计方法的研究 被引量:12

Research on CS-based Channel Estimation Methods for UWB Communications
下载PDF
导出
摘要 压缩感知(Compressed Sensing,CS)理论可以从较少的观测样本中恢复稀疏信号。针对超宽带(Ultra-WideBand,UWB)信道的稀疏特性,将压缩感知理论应用于UWB系统的信道估计中,能够有效地降低系统的采样速率。该文针对UWB信道的特点对过完备字典库和观测矩阵进行设计,提出了一种滤波矩阵估计算法。然后,分别利用丹茨格选择器(Dantzig Selector,DS),基追踪降噪(Basis Pursuit De-Noising,BPDN)算法和正交匹配跟踪(Orthogonal Matching Pursuit,OMP)算法实现信号检测,进一步给出UWB信道估计中CS重建算法的选择建议。基于IEEE 802.15.4a信道模型的仿真结果表明,该算法同随机观测算法的检测结果相比,能够在较低的采样速率下获得更好的误码率性能。 The theory of compressed sensing can be used to reconstruct sparse signals from fewer observations.According to the sparsity of UWB channels,a reduced sampling rate can be obtained at the detector based on compressed sensing frame.In this paper,a filter matrix estimation algorithm is proposed by designing the over-completed dictionary and observation matrix.Then,the Orthogonal Matching Pursuit(OMP),the Basis Pursuit De-noising(BPDN) and the Dantzig Selector(DS) are used to detect original signal to give the opinions for choosing suitable reconstruction algorithms.The simulation results in the IEEE 802.15.4a channel model show that the coherence detection based on the new channel estimation method outperforms the one based on random observation method for better bit error rate performances with a reduced sampling rate.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第6期1452-1456,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60976065)资助课题
关键词 无线通信 超宽带 信道估计 压缩感知 稀疏重建 Wireless communication Ultra-WideBand(UWB) Channel estimation Compressed Sensing(CS) Sparse reconstruction
  • 相关文献

参考文献12

  • 1Selmic R R, Mitra A, Challa S, et al.. Ultra-wideband signal propagation experiments in liquid media [J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(1): 215-220.
  • 2Donoho D L. Compressed Sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 3Bajwa Waheed U, Haupt J, Sayeed A M, et al.. Compressed channel sensing: a new approach to estimating sparse multipath channels [J]. Proceedings of the IEEE, 2010, 98(6): 1058-1076.
  • 4Wang Zhong-min, Arce G R, Paredes J L, et al.. Compressed detection for ultra-wideband impulse radio [CI. IEEE 8th Workshop on Signal Processing Advances in Wireless Communications, Helsinki, June 2007: 1-5.
  • 5Paredes J L, Arce G R, and Wang Zhong-min. Ultra- wideband compressed sensing: channel estimation [J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(3): 383-395.
  • 6Jin B, Zhang S, Pan J, et al.. Serial compressed sensing communication system for UWB impulse radio in bursty applications [J]. Electronics Letters, 2011, 47(6): 412-414.
  • 7Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 8Bajwa Waheed U, Haupt Javis D, Raz Gil M, et al.. Toeplitz-structured compressed sensing matrices [C]. IEEE 14th Workshop on Statistical Signal Processing (SSP), Madison, Wisconsin, August 2007: 294-298.
  • 9Liu Chun-shan, Chen Te-yan, and Zakharov Y V. Broadband underwater source localization by solving basis pursuit de-noising using coordinate descent search [C]. 2010 7th International Symposium on Wireless Communication Systems (ISWCS), York, Sept. 2010: 1-5.
  • 10Candes E and Tao T. The Dantzig selector: statistical estimation when p is much larger than n [J]. The Annals Statistics, 2007, 35(6): 2313-2351.

同被引文献93

  • 1王东明,高西奇,尤肖虎,韩冰.宽带MIMO-OFDM系统信道估计算法研究[J].电子学报,2005,33(7):1254-1257. 被引量:21
  • 2姜雪,李颂文.基于伪随机序列的多波束水声探测系统的信道估计技术[J].声学技术,2007,26(3):389-394. 被引量:4
  • 3黄安民.基于感知字典的稀疏重建算法研究[D].成都:电子科技大学,2011:1-3.
  • 4DONOHO D L. Compressed sensing [ J 1. IEEE Transac- tions on Information Theory, 2006, 52(4) :1289-1306.
  • 5PAREDES J L, ARCE G R, WANG Z M. Ultra-wideband compressed sensing: Channel estimation [ J ]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 ( 3 ) : 383-395.
  • 6J1 S H, XUE Y, CARIN L. Bayesian compressive sensing [ J ]. IEEE Transactions on Sighal Processing, 2008, 56(6) :2346-2356.
  • 7YAN R M, WAN Q, YANG W L. et al. Greedy approach to sparse multi-path channel estimation using sensing dic- tionary [ J ]. International Journal of Adaptive Control and Signal Processing, 2011, 25 ( 6 ) :544-553.
  • 8BAli B, TANNER J. Improved bounds on restricted isometry constants for Guassian matrices [ J ]. SIAM Journal on Matrix Analysis and Applications, 2010, 31 (5) : 2882-2898.
  • 9TSAIG Y, DONOHO D L. Extensions of compressed sen- sing[ J ]. Signal Processing, 2006, 86 (3) :533-548.
  • 10DAVENPORT M A, WAKIN M B, BARANIUK R G. De- tection and estimation with compressive measurements [ R ]. Technical Report TREE, Department of Electrical Engineering, Rice University, USA, 2006.

引证文献12

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部