期刊文献+

基于相似性的POLSAR占优散射归类及非监督聚类 被引量:2

POLSAR Dominant Scattering Mechanism Clustering and Unsupervised Classification Based on Similarity
下载PDF
导出
摘要 极化相似性满足旋转不变性、尺度无关性及有界性,基于此,该文提出一种极化相似性与Freeman模型相结合的POLSAR占优散射归类及非监督聚类方法。实验表明,该方法解决了Freeman分解在分类应用中所存在的问题,相比于直接应用Freeman分解的分类方法,在地物散射特征的描述上更加准确。 A new POLSAR dominant scattering mechanism clustering and unsupervised classification method is proposed based on polarimetric scattering similarity and Freeman decomposition models.As polarimetric scattering similarity is roll-invariant and nonnegative,the method fixes the problems of Freeman decomposition in classification.Experiment shows that,comparing to the classification method based on Freeman decomposition,the proposed method depicts terrain scattering properties more accurately.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第6期1501-1505,共5页 Journal of Electronics & Information Technology
基金 中国科学院战略性先导科技专项(XDA05000000) 国家863计划项目(2009AA12Z118)资助课题
关键词 极化SAR Freeman分解 极化相似性 非监督聚类 POLSAR Freeman decomposition Polarization similarity Unsupervised classification
  • 相关文献

参考文献14

  • 1Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoseience and Remote Sensing, 1996, 34(2): 498-518.
  • 2Touzi R, Boerner W M, and Lee J S. A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction[J]. Canadian Journal of Remote Sensing, 2004, 30(3): 380-407.
  • 3Freeman A and Durden S L. A three component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973.
  • 4Lee J S, Grunes M R, and Pottier E. Unsupervised terrain classification preserving scattering characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 722-731.
  • 5Yang J, Peng Y N, and Lin S M. Similarity between two scattering matrices[J]. Electronics Letters, 2001, 37(3): 193-194.
  • 6陈强,蒋咏梅,匡纲要.一种度量目标散射相似性的新参数[J].信号处理,2010,26(3):332-336. 被引量:1
  • 7Chen Q, Jiang Y M, Zhao L J, et al.. A scattering similarity based classification scheme for land applications of polarimetric SAR image[C]. Proceedings of 2010 IEEE 17th International Conference on Image Processing, Hong Kong, 2010: 1361-1364.
  • 8Lee J S, Schuler D L, and Ainsworth T L. On the estimation of radar polarization orientation shifts induced by terrain slopes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1): 30-41.
  • 9An W T, Cui Y, and Yang J. Three-component model-based decomposition for polarimetric SAR data[J]. IEEE Transactions on Geoseience and Remote Sensing, 2010, 48(6): 2732-2739.
  • 10Yamaguchi Y, Sato A, Boerner W M, et al.. Four-component scattering power decomposition with rotation of coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2251-2258.

二级参考文献4

同被引文献27

  • 1Cloude S. Polarisation: Applications in Remote Sensing[M]. London, U.K.: Oxford University Press, 2009.
  • 2Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoseience and Remote Sensing, 1996, 34(2): 498-518.
  • 3Freeman A and Durden S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973.
  • 4Yainaguchi Y, Moriyama T, Ishido M, et al.. Four- component scattering model for polarimetric SAR image decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699-1706.
  • 5Wohlhart P, Kostinger M, Donoser M, et al.. Optimizing 1- Nearest prototype classifiers[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013: 460-467.
  • 6Quattoni A, Collins M, and Darrell T. Transfer learning for image classification with sparse prototype representations[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1-8.
  • 7Crammer K, Gilad-Bachrach R, Navot A, et al.. Margin analysis of the LVQ algorithm[C]. Advances in Neural Information Processing Systems, 2002: 462-469.
  • 8Kostinger M, Wohlhart P, Roth P M, et al.. Joint learning of discriminative prototypes and large margin nearest neighbor classifiers[C]. IEEE International Conference on Computer Vision, 2013:3112-3119.
  • 9Dai D and Gool L V. Ensemble projection for semi- supervised image classification[C]. IEEE International Conference on Computer Vision, 2013:2072-2079.
  • 10Wang D. Online object tracking with sparse prototypes[J]. IEEE Transactions on Image Processing, 2013, 22(1):314-325.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部