摘要
:研究相对论完整非保守系统的Lie对称性和守恒量 ,定义相对论力学系统的无限小变换生成元 ,利用微分方程在无限小变换下的不变性 ,建立相对论力学系统的Lie对称确定方程 ,得到结构方程和守恒量的形式 ,并举例说明其应用 .
The Lie seymmetries and conserved quantities of relativistic holonomic nonconservative systems are studied.By defining the infinitesimal transformations′ generators,and by using the invariance of the differential equations under the infinitesimal transformations,the determining equations of Lie symmetries for the relativistic nonconservative mechanical systems are established.The structure equations and the forms of conseved quantities are obtained.An example to illustrate the application of the results is given.
基金
国家自然科学基金资助项目 !19972 0 10
河南省自然科学基金资助项目!934 0 6 0 80 0
9840 5 310 0
关键词
相对论
分析力学
守恒量
非保守系统
李对称性
relativity
analytic mechanics
Lie symmetry
conserved quantity
nonconservative system