摘要
利用小波变换的时频特性和多分辨率特点 ,将待处理的信号通过调整小波尺度来抽取具有实质性的故障特征 ,确保了信息量的完整性。将模糊理论与人工神经网络相结合 ,应用于滚动轴承的故障诊断中 ,并采用面向对象的分析方法和编程技术实现了轴承实验机的智能诊断与管理。
A method using the time-frequency and multi-distinguishability characteristic of wavelet transform is porposed to extract fault characteristic processed signal by adjusting wavelet scale,which ensures informational completeness.In addition,a method is put forword which combines artificial neural network with the theory of fuzzy logic and applied to the fault diagnosis of rolling bearing.Then by means of object-oriented analytic methods as well as programming skills,we implement the intellective diagnosis and manage system of bearing test machine.
出处
《机械设计与制造》
北大核心
2000年第2期3-4,共2页
Machinery Design & Manufacture
关键词
故障诊断
小波变换
模糊神经网络
滚动轴承
rolling bearing
failure diagnosis
wavelet transform
fuzzy neural network