期刊文献+

The constructing of pore structure factor in carbonate rocks and the inversion of reservoir parameters 被引量:3

碳酸盐岩孔隙结构参数构建与储层参数反演(英文)
下载PDF
导出
摘要 With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the influence on elastic rock properties. We start with a discussion and an analysis about carbonate rock pore structure utilizing rock slices. Then, given appropriate assumptions, we introduce a new approach to modeling carbonate rocks and construct a pore structure algorithm to identify pore structure mutation with a basis on the Gassmann equation and the Eshelby-Walsh ellipsoid inclusion crack theory. Finally, we compute a single well's porosity using this new approach with full wave log data and make a comparison with the predicted result of traditional method and simultaneously invert for reservoir parameters. The study results reveal that the rock pore structure can significantly influence the rocks' elastic properties and the predicted porosity error of the new modeling approach is merely 0.74%. Therefore, the approach we introduce can effectively decrease the predicted error of reservoir parameters. 碳酸盐岩储层孔隙结构相对碎屑岩更复杂,常用的岩石物理模型不能较好的描述其孔隙结构的变化规律,且岩石孔隙结构的差异较大程度上会影响岩石的弹性性质。本文首先利用岩石薄片分析了碳酸盐岩的微观孔隙结构。然后基于Gassmann方程和Eshelby-Walsh椭球包体裂缝理论,在合理的假设前提下给出了一种新的岩石物理建模方法,并且从中提取了一个参数来表征孔隙结构的变化规律。最后,基于全波列测井数据,我们利用该方法计算了单井的孔隙度,并与用常规方法预测的结果进行了比较,同时进行了地震储层参数反演。研究结果表明,孔隙结构对岩石的弹性性质的影响较大,且新的建模方法预测的孔隙度误差仅为0.74%。因此,该方法可有效的减小孔隙结构对计算各岩石弹性参数的影响并提高孔隙度的预测精度。
出处 《Applied Geophysics》 SCIE CSCD 2012年第2期223-232,236,共11页 应用地球物理(英文版)
基金 sponsored by the National Nature Science Foundation of China (Grant No.40904034 and 40839905)
关键词 Carbonate rocks rock physical model pore structure algorithm reservoir parameter inversion 岩石孔隙结构 碳酸盐岩 储层参数 参数反演 结构因素 Gassmann方程 预测误差 建模方法
  • 相关文献

参考文献2

二级参考文献19

  • 1郑骏.贝叶斯(Bayes)学派的统计思想[J].数学通报,1994,33(7):36-38. 被引量:9
  • 2李世雄.一维波动方程的奇性反演与小波[J].地球物理学报,1995,38(1):93-104. 被引量:27
  • 3陈建江,印兴耀.基于贝叶斯理论的AVO三参数波形反演[J].地球物理学报,2007,50(4):1251-1260. 被引量:76
  • 4Downton J E. Seismic parameter estimation from AVO inversion. Calgary:University of Calgary, 2005, 1
  • 5Simmons J L, Backus M M. Waveform-based AVO inversion and AVO prediction error. Geophysics, 1996, 61:1575-1588
  • 6Buland A, Omre H. Bayesian linearized AVO inversion. Geophysics, 2003, 68:185-198
  • 7Hampson D P, Russell B H. Simultaneous inversion of prestack seismic data. SEG/Houston 2005 Annual Meeting. 1633-1637
  • 8Mallick S. Model-based inversion of amplitude variations with offset data using a genetic algorithm, Geophysics, 1995, 60: 939-954
  • 9Mogensen S. Artificial Neural Network Solutions to AVO Inversion Problems. 74th Annual International Meeting SEG, 2004
  • 10Kuzma H A, Rector J W. Non linear AVO inversion using support vector machines. 74th Annual International Meeting SEG, 2004

共引文献80

同被引文献42

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部