期刊文献+

一种悲观多粒度粗糙集中的粒度约简算法 被引量:36

A Granular Space Reduction Approach to Pessimistic Multi-Granulation Rough Sets
原文传递
导出
摘要 多粒度粗糙集方法是近年来粗糙集理论的一个发展方向,它是一种基于多个粒空间的粗糙数据建模方法.文中针对悲观多粒度粗糙集模型,引入分布约简的概念,分析多个粒空间中的粒度选择问题.基于给出的粒度重要度提出悲观多粒度粗糙集中的粒度约简算法,并通过实例验证该方法的有效性.结论表明该方法得到的结果更加符合实际决策. Multi-granulation rough set method (MGRS) is one of new directions in rough set theory. It is a data modeling method in the context of multiple granular spaces. Firstly, a concept of distribution reduction is introduced to pessimistic multi-granulation rough model, and a granular space selection under multiple granular spaces is investigated. Then, the important measure of a granular space in this model is defined, and an algorithm is designed to obtain a granular space reduction in the pessimistic multi-granulation rough model. Finally, an example is employed to verify the validity of the proposed algorithm. The obtained results are much closer to the practical decision.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第3期361-366,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60903110) 山西省自然科学基金(No.2009021017-1)资助项目
关键词 悲观多粒度粗糙集 粒度约简 分布约简 Pessimistic Multi-Granulation Rough Sets, Granular Space Reduction, Distribution Reduction
  • 相关文献

参考文献16

  • 1Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Sol- ving. Dordrecht, Netherlands: Kluwer, 1991.
  • 2Pawlak Z, Skowron A. Rudiments of Rough Sets. Information Sci- ences, 2007, 177(1) : 3 -27.
  • 3Duntsch I, Gediga G. Uncertainty Measures of Rough Set Predic- tion. Artificial Intelligence, 1998, 106(1): 109-137.
  • 4Jensen R, Shen Qiang. Fuzzy-Rough Sets Assisted Attribute Selec-tion. IEEE Trans on Fuzzy Systems, 2007, 15(1) : 73 -89.
  • 5Jeon G, Kim D, Jeong J. Rough Sets Attributes Reduction Based Expert System in Interlaced Video Sequences. IEEE Trans on Con- sumer Electronics, 2006, 52(4): 1348-1355.
  • 6Liang Jiye, Chin K S. A New Method for Measuring Uncertainty and Fuzziness in Rough Set Theory. International Journal of General Systems, 2002, 31(4): 331 -342.
  • 7Qian Yuhua, Liang Jiye, Dang Chuanyin. Incomplete Multigranula- tion Rough Set. IEEE Trans on Systems, Man and Cybernetics, 2010, 40(2) : 420 -431.
  • 8Qian Yuhua, Liang Jiye, Li Deyu, et al. Approximation Reduction in Inconsistent Incomplete Decision Tables. Knowledge-Based Sys- tems, 2010, 23(2) : 427 -433.
  • 9Xu Z B, Liang J Y, Dang C Y, et al. Inclusion Degree : A Perspec- tive on Measures for Rough Set Data Analysis. Information Sci- ences, 2002, 141(3/4): 227-236.
  • 10Ziarko W. Variable Precision Rough Sets Model. Journal of Com- puter System Science, 1993, 46 ( 1 ) : 39 - 59.

二级参考文献6

  • 1[1]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning a bout Data. Boston: Kluwer Academic Publishers,1991
  • 2[6]Ziarko W. Variable precision rough set model. Journal of Computer and System Sciences,1993,46(1):39~59
  • 3[7]Greco S,Matarazzo B,Slowinski R. A new rough set approach in multicreteria and multiattribute classification. In: Lecture Notes in Artificial Intelligence 1424, New York: Springer-Verlag, 1998
  • 4[8]Slezak D. Approximate reducts in decision tables. In: Proceedings of IPMU' 96 ,Granada,Spain, 1996,3:159~ 1164
  • 5[9]Quafatou M. α-RST: A generalization of rough set theory. In formation Sciences,2000,124(1~4) :301~316
  • 6[10]Kryszkiewicz M. Comparative studies of alternative type of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems, 2001,16(1): 105~120

共引文献189

同被引文献232

引证文献36

二级引证文献196

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部