摘要
多粒度粗糙集方法是近年来粗糙集理论的一个发展方向,它是一种基于多个粒空间的粗糙数据建模方法.文中针对悲观多粒度粗糙集模型,引入分布约简的概念,分析多个粒空间中的粒度选择问题.基于给出的粒度重要度提出悲观多粒度粗糙集中的粒度约简算法,并通过实例验证该方法的有效性.结论表明该方法得到的结果更加符合实际决策.
Multi-granulation rough set method (MGRS) is one of new directions in rough set theory. It is a data modeling method in the context of multiple granular spaces. Firstly, a concept of distribution reduction is introduced to pessimistic multi-granulation rough model, and a granular space selection under multiple granular spaces is investigated. Then, the important measure of a granular space in this model is defined, and an algorithm is designed to obtain a granular space reduction in the pessimistic multi-granulation rough model. Finally, an example is employed to verify the validity of the proposed algorithm. The obtained results are much closer to the practical decision.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2012年第3期361-366,共6页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金(No.60903110)
山西省自然科学基金(No.2009021017-1)资助项目
关键词
悲观多粒度粗糙集
粒度约简
分布约简
Pessimistic Multi-Granulation Rough Sets, Granular Space Reduction, Distribution Reduction