期刊文献+

基于热传导模型的更新摘要算法 被引量:1

Update Summarization Based on Heat Conduction Model
原文传递
导出
摘要 更新摘要除了要解决传统的面向话题的多文档摘要的两个要求——话题相关性和信息多样性,还要求应对用户对信息新颖性的需求.文中为更新摘要提出一种基于热传导模型的抽取式摘要算法——HeatSum.该方法能够自然利用句子与话题,新句子和旧句子,以及已选句子和待选句子之间的关系,并且为更新摘要找出话题相关、信息多样且内容新颖的句子.实验结果表明,HeatSum与参加TAC09评测的表现最好的抽取式方法性能相当,且更优于其它基准方法. Besides the problems of topic relevance and information diversity tackled by traditional topic-focused multi-document summarization, the update summarization is required to address the problem of information novelty as well. In this paper, HeatSum, an extractive approach based on heat conduction for update summarization, is proposed. The process can naturally make use of the relationships among the given topic, the old sentences, the new sentences, and the sentences selected and to be selected to find proper sentences for update summarization. Therefore, HeatSum is able to simultaneously address the challenging problems above for update summarization in a unified way. The experiments on benchmark of TAC 2009 are performed and the ROUGE evaluation results show that the HeatSum achieves fine performance compared to the best existing performing systems in TAC tasks and it significantly outperforms other baseline methods.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第3期367-374,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金重点项目(No.60933005) 国家自然科学基金项目(No.60903139 61003166) 国家863计划项目(No.2010AA012500)资助
关键词 更新摘要 面向话题的多文档摘要 热传导模型 Update Summarization, Topic-Oriented Multi-Document Summarization, Heat Conduction Model
  • 相关文献

参考文献25

  • 1Boudin F, E1-Bueze M, Torres-Moreno J M. A Scalable MMR Approach to Sentence Scoring for Multi-Document Update Summari- zation// Proc of the 22nd International Conference on Computing Linguistics. Manchester, UK, 2008:23-26.
  • 2Wan Xiaojun. Timedtextrank: Adding the Temporal Dimension to Multi-Document Summarization//Proc of the 30th Annual Interna- tion: ACM SIGIR Conference on Research and Development in information Retrieval. Amsterdam, Netherlands, 2007 : 867 - 868.
  • 3Zhang Jin, Cheng Xueqi, Xu Hongbo, et al. ICTCASg ICTGrasper at TAC 2008: Summarizing Dynamic Information with Signature Terms Based Content Filtering [ EB/OL]. [2010-08-13 ]. http:// www. nist. gov/tac/publications/2008/participant, papers/ICTCAS. proceedings, pdf.
  • 4Steinberger J, Jezek K. Update Summarization Based on Novel Topic Distribution//Proc of the 9th ACM Symposium on Document Engi- neering. Munich, Germany, 2009:205-213.
  • 5Li Wenjie, Wei Furu, Lu Qin, et al. PNR 2: Ranking Sentences with Positive and Negative Reinforcement for Query-Oriented Update Summarization // Proc of the 22nd International Conference on Computational Linguistics. Manchester, UK, 2008 : 489 -496.
  • 6Erkan G, Radev D R. LexRank: Graph-Based Lexical Centrality as Salience in Text Summarization. Journal of Artificial Intelligence Research, 2004, 22 ( 1 ) : 457 - 479.
  • 7Lin C Y, Hovy E. Manual and Automatic Evaluation of Summaries // Proc of the ACL-02 Workshop on Automatic Summarization. Monrristown, USA, 2002 : 45 - 51.
  • 8Mihalcea R, Tarau P. Textrank: Bringing Order into Texts// Proc of the Conference on Empirical Methods in Natural Language Processing. Barcelona, Spain, 2004 : 404 - 411.
  • 9Otterbacher J, Erkan G, Radev D. Using Random Walks for Ques- tion-Focused Sentence Retrieval // Proc of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing. Vancouver, Canada, 2005:915-922.
  • 10Saggion H, Bontcheva K, Cunningham H. Robust Generic and Query-Based Summarization // Proc of the 10th Conference on European Chapter of the Association for Computational Linguistics. Stroudsburg, USA, 2003 : 235 - 238.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部