期刊文献+

基于基窗口的多维数据流相关性分析算法 被引量:1

Correlation Analysis on Multidimensional Data Streams Based on Base-Windows
原文传递
导出
摘要 多维数据流相关性分析的研究较少,且主要集中在单一滑动窗口分析.文中提出一种基于基窗口的在线典型相关分析算法(Base_win_CCA).算法动态维护基窗口的统计量用于多维相关性分析,时空复杂度大为减少,并且可根据多用户并发请求获取多个窗口范围的相关性,较灵活,运算结果精确.理论分析和实验结果表明算法在基窗口越大,相关性查询窗口越大,数据流条数越多,查询用户越多的情况下能体现出优越的性能. Multidimensional data stream analysis is seldom studied, even the minor contribution is mainly from the analytical works on a single sliding window model. An on-line correlation analysis algorithm called Base_win_ CCA algorithm is presented, which significantly reduces space and time complexity by performing simultaneous correlation analysis on multidimensional data streams. Technically, the algorithm achieves the correlation of multiple windows in a flexible and accurate way by dynamically maintaining statistics data. Theoretical analysis and experimental results indicate that the proposed algorithm is remarkable in performance when the window is larger with sufficient data streams and users.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第3期435-444,共10页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60803021 61170035 60973047 60902097) 浙江省公益技术应用研究项目(No.2010C33149) 宁波市自然科学基金项目(No.2010A610115)资助
关键词 多维数据流 相关性分析 基窗口 统计量 Multidimensional Data Streams, Correlation Analysis, Base-Window, Statistics
  • 相关文献

参考文献11

  • 1Zhu Yunyue, Shasha D. StatStream: Statistical Monitoring of Thou- sands of Data Streams in Real Time//Proc of the 28th International Conference on Very Large Data Bases. Hang Kong, China, 2002: 358 - 369.
  • 2Viachos M, Suleyman S, Philip S. Optimal Distance Bounds on Time-Series Data// Proc of the SIAM International Conference on Data Mining. Sparks, USA, 2009:109 - 120.
  • 3Kanagal B, Deshpande A. Lineage Processing over Correlated Prob- abilistic Databases//Proc of the ACM SIGMOD International Con- ference on Management of Data. Indianapolis, USA, 2010:675 - 686.
  • 4Galen R, Liu J, Nath S, et al. Managing Massive Time Series Streams with Multiscale Compressed Trickles // Proc of the 35thInternational Conference on Very Large Data Bases. Lyon, France, 2009 : 97 - 108.
  • 5Bulut A, Singh A. SWAT: Hierarchical Stream Summarization in Large Networks//Proc of the 19th International Conference on Data Engineering. Bangalore, India, 2003 : 303 - 314.
  • 6Bulut A, Ambuj K, Singh A. A Unified Framework for Monitoring Data Streams in Real Time//Proc of the 21st International Confer- ence on Data Engineering. Tokyo, Japan, 2005:44 -55.
  • 7Sakurai Y. BRAID: Stream Mining through Group Lag Correlations //Proc of the ACM SIGMOD International Conference on Manage- ment of Data. Baltimore, USA, 2005 : 14 - 16.
  • 8Mueen A, Nath S, Liu J. Fast Approximate Correlation for Massive Time-Series Data//Proc of the ACM SIGMOD International Confer- ence on Management of Data. Indianapolis, USA, 2010:171 - 182.
  • 9Sudipto G, Dimitrios G, Nick K. Correlating Synchronous and Asynchronous Data Streams//Proc of the 9th ACM SIGKDD Inter- national Conference on Knowledge Discovery and Data Mining. Washington, USA, 2003 : 529 - 534.
  • 10王永利,徐宏炳,董逸生,钱江波,刘学军.基于低阶近似的多维数据流相关性分析[J].电子学报,2006,34(2):293-300. 被引量:12

二级参考文献12

  • 1徐仲 张凯院 陆全.矩阵论简明教程[M].北京:科学出版社,2002.140-143.
  • 2Yunyue Zhu,Dennis Shasha.StatStream:Statistical monitoring of thousands of data streams in real time[A].Proceedings of 29th International Conference on Very Large Data Bases (VLDB 2002)[C].Hong Kong,China:Springer-Verlag New York,Inc,2002.358-369.
  • 3Ahmet Bulut,Ambuj K Singh.A unified framework for monitoring data streams in real time[A].Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)[C].Tokyo,Japan:IEEE Computer Society,2005.44-55.
  • 4Sudipto G,Dimitrios G,Nick K.Correlating synchronous and asynchronous data streams[A].Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD2003)[C].Washington,USA:ACM Press,2003.529-534.
  • 5Achlioptas D,McSherry F.Fast computation of low rank approximations[A].Proceedings of the 33rd Annual Symposium on Theory of Computing (STOC2001)[C].Crete,Greece:ACM Press,2001.611-618.
  • 6Muthukrishnan S.Data streams:algorithms and applications[A].Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms[C].Baltimore,Maryland,USA:Society for Industrial and Applied Mathematics,2003.413-413.
  • 7Johnson R A,Wichern D W.Applied Multivariate Statistical Analysis (3rd Edition)[M].Prentice:Hall Inc,1992.Chapter 4.
  • 8Johnson W B,Lindenstrauss J.Extension of lipshitz mapping into hilbert space[J].Contemporary Mathematics,1984,26(5):189-206.
  • 9Alan F,Ravi K,Santosh V.Fast monte-carlo algorithms for finding low-rank approximations[A].Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS98)[C].Palo Alto,California,USA:IEEE Computer Society,1998.370-378.
  • 10Borga M.Learning Multidimensional Signal Processing[D].Sweden:Link(o)ping University,Sweden,1998.

共引文献11

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部