期刊文献+

利用粒子群算法优化多源检索融合结果的方法 被引量:1

Optimizing Merging Results of Multiple Resource Retrievals by a Particle Swarm Algorithm
原文传递
导出
摘要 对多个搜索引擎系统返回结果进行自动整合,是当前网络信息检索应用至今尚未较好解决的一个难点,也是影响元搜索引擎效果的关键技术环节.在实验多种处理多源搜索结果融合算法的基础上,文中提出一种可对多种其它融合排序算法输出结果做进一步优化的离散粒子群算法.该算法不仅能在整体效果上优于作为其预处理输入的其它融合排序算法,而且对不同查询有更好的适应性,不需考虑各独立源检索返回结果的质量权重及相互间重叠率等因素.与作为其输入处理的其它融合算法相比,该算法的相关文档识别准确率可提高约20%,而准确率随查询主题变化的标准差可降低约50%. To automatically merge the result from multiple independent research engines (IREs) is a key component of the metasearch engine development and it is problem in distributed information retrieval applications as well. After testing a variety of existing result merging algorithms for multiple IRE results, a discrete particle swarm algorithm (DPSA) is proposed for further optimizing a group of merging results produced by other result merging algorithms. The experimental results show that the DPSA generally outperforms all the other result merging algorithms. It usually has better adaptability in application for not having to take into account the usefulness weights of IRE results and the overlap rate among different IRE results of a query. Compared to other result merging algorithms, the recognition precision of DPSA increases nearly 20%, while the precision standard deviation for different queries decreases about 50%.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第3期527-533,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.90818007)
关键词 多源检索 融合排序 元搜索引擎 离散粒子群算法(DPSA) Multiple Resource Retrievals, Result Merging, Metasearch Engine, Discrete Particle Swarm Algorithm (DPSA)
  • 相关文献

参考文献12

  • 1Yuan Fuyong, Wang Jindong. An Implemented Rank Merging Algo- rithm for Meta Search Engine // Proc of the ICRCCS International Conference on Research Challenges in Computer Science. Shanghai, China, 2009 : 191 - 193.
  • 2Ganzha M, Paprzycki M, Stadnik J. Combining Information from Multiple Search Engines - Preliminary Comparison. Information Sci- ence: An International Journal, 2010, 180(10) : 1908 -1923.
  • 3Wu Shengli, McClean S. Result Merging Methods in Distributed Information. Journal of Information Retrieval, 2007, 10 ( 3 ) : 297 - 319.
  • 4Lu Yiyao, Meng Weiyi, Shu Liangcai, et al. Evaluation of Result Merging Strategies for Metasearch Engines// Proc of the 6th Inter- national Conference on Web Information System Engineering. New York, USA, 2005 : 53 - 66.
  • 5Wu Shengli, Crestani F. Shadow Document Methods of Results Mer- ging// Proc of the 19th ACM Symposium on Applied Computing. Nicosia, Cyprus, 2004 : 1067 - 1072.
  • 6Yang Qingyun, Wang Chunjie, Zhang Changsheng. An Efficient Discrete Particle Swarm Algorithm for Task Assignment Problems// Proc of the IEEE International Conference on Granular Computing.Changchun, China, 2009 : 686 - 690.
  • 7余伶俐,蔡自兴.改进混合离散粒子群的多种优化策略算法[J].中南大学学报(自然科学版),2009,40(4):1047-1053. 被引量:19
  • 8聂笃宪,袁利国,文有为.应用粒子群优化算法选择正则化参数[J].计算机工程与应用,2009,45(12):195-197. 被引量:6
  • 9Calderero F, Marques F. Region Merging Techniques Using Infor- mation Theory Statistical Measures. IEEE Trans on Image Process- ing, 2010, 19(6): 1567-1586.
  • 10Cao Zhe, Tao Qin, Liu Tieyan, et al. Learning to Rank: From Pairwise Approach to Listwise Approach//Proc of the 24th Inter- national Conference on Machine Learning. Corvallis, USA, 2007 : 129 - 136.

二级参考文献28

共引文献122

同被引文献28

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部