5Al Mamunur Rashid,Istvau Albert,Dan Cosley,et al.Getting to know you:Learning new user preference in recommender systems[C].San Francisco,California,USA:Proceedings of the 7th international Conference on Intelligent User Interfaces,2002.127-134.
6Brendan Kitts,David Freed,Martin Vrieze.Cross-sell:A fast P romotion-tunable customer-item recommendation method based on conditional independent probabilities[C].Boston,Massachusetts,United States:Proceedings of ACM SIGKDD International Conference,2000.437-446.
7Geroge Karypis.Evaluation of item-based top-N recommendation aAlgorithms[C].Atlanta,Georgia,USA:Proceedings of the Tenth International Conference on Information and Knowledge Management 2001.247-254.
8Schafer J B,Konstan J,Riedl J.Application of dimcnsionality reduction in recommender system-A case study[C].Boston,MA,USA:Proceedings of the WebKDD Workshop at the ACM-SIGKDD Conference on Knowledge Discovery in Databases,2000.
9Yu k,Wen Z,Xu X,et al.Feature weighting and instance selection for collaborative filtering[C].Munich,Gerneny:2nd International Workshop on Management of Information on the Web,in Conjunction with the 12th International Conference on DEXA,2001.285-290.
10Kai Yu,Xiaowei Xu,Martin Ester,et al.Collaborative filtering and algorithms:Selecting relevant instances for efficient and accurate collaborative filtering[C].Atlanta,Georgia,USA:Proceedings of the Tenth International Conference on Information and Knowledge Management,2001.239-246.