期刊文献+

一种无约束多步递归神经网络预测控制器 被引量:11

Multistep recurrent neural network model predictive controller without constraints
下载PDF
导出
摘要 本文针对具有强非线性、多工作点特性的控制系统,提出了一种基于递归BP神经网络的多步预测模型;通过分析预测模型的内在数学关系,选择了二次型函数作为预测控制器的目标函数,并给出了目标函数关于控制序列的雅可比矩阵和赫森矩阵的计算方法;最后使用Newton-Rhapson算法设计出了滚动优化控制策略,构建了一个非线性多步预测控制器.仿真结果表明,文中提出的多步预测控制器具有较好的控制效果. This paper brings forward a multistep predictive model based on the recurrent backpropagation (BP) neural network for the control systems with strong nonlinearity and multiple set-points. By analyzing the internal mathematical relation of the predictive model, we select a quadratic function as the objective function for the multistep predictive con- troller. For this objective function, we compute the Jacobian matrix and Hessian matrix of the control sequence, and design the receding horizon optimization strategy using Newton-Rhapson algorithm, thus, constituting a nonlinear multistep model oredictive controller. Simulation results show desirable performances of the model predictive controller.
作者 李会军 肖兵
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第5期642-648,共7页 Control Theory & Applications
基金 教育部高等学校博士学科点专项科研基金资助项目(20090095120002) 中国矿业大学青年科研基金资助项目(0C090197)
关键词 模型预测控制 神经网络 非线性自回归滑动平均模型(NARMAX) 优化 model predictive control neural network NARMAX optimization
  • 相关文献

参考文献14

  • 1XI Yugeng. Predictive Control[M]. Beijing : National Defence In- dustry Press, 1993.
  • 2舒迪前.预测控制系统及应用[M].北京:机械工业出版社,1996.7-26.
  • 3SHU Diqian. Predictive Control System and Application[M]. Bei- jing: China Machine Press, 1996.
  • 4戴文战,娄海川,杨爱萍.非线性系统神经网络预测控制研究进展[J].控制理论与应用,2009,26(5):521-530. 被引量:51
  • 5HORNIK K M, STINCHCOMBE M, WHITE H. Multilayer feed- forward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359 - 366.
  • 6CHEN S, BILLINGS S A. Representations of non-linear systems: the NARMAX model[J]. International Journal of Control, 1989, 49(3): 1013 - 1032.
  • 7AKESSON B M, TOIVONEN H T. A neural network model predic- tive controller[J]. Journal of Process Control, 2006, 16(9): 937 - 946.
  • 8RUANO A E, CRISPIM E M, CONCEICAO E Z E, et al. Prediction of building's temperature using neural networks models[J]. Energy and Buildings, 2006, 38(6): 682 - 694.
  • 9KISHOR N, SINGH S P. Simulated response of NN based identifi- cation and predictive control of hydro plant[J]. Expert Systems with Applications, 2007, 32(1): 233 - 244.
  • 10YU D W, YU D L. Multi-rate model predictive control of a chemi- cal reactor based on three neural models[J]. Biochemical Engineering Journal, 2007, 37(1): 86 - 97.

二级参考文献130

共引文献66

同被引文献134

引证文献11

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部