期刊文献+

柔性电子封装结构中夹杂对延展性的影响分析 被引量:1

Inclusion effect on the stretchability of encapsulated flexible electronics
下载PDF
导出
摘要 以岛-桥型柔性电子封装结构为研究对象,从封装材料中夹杂的刚度、位置、封装方式三个方面探讨了夹杂对柔性电子结构延展性的影响。有限元分析结果表明:随着夹杂刚度的增大,桥的最大主应变增大,整体结构最大延伸量可减小30%;夹杂埋藏位置越深,桥顶局部的整体应变水平越大,最大延伸量可减小20%;相对"硬"封装情形,相同的夹杂对"软"封装中桥的最大延伸量的影响更严重。本文所得结论对于柔性电子器件结构的设计和材料选用具有参考和指导意义。 The island-bridge structure of encapsulated flexible electronics is mainly studied and the influence of inclusion on the stretchability of encapsulated flexible electronics from three aspects is discussed,that is,the stiffness of inclusion,the position of inclusion and ways of encapsulation.The finite element simulation results show that when the stiffness of inclusion increases,the maximum strain of bridge strengthens,but the maximum value of stetchablity decreases up to 30%;As the depth of the inclusion increases,the whole strain level of local bridge top area increases and the maximum value of stetchablity of the bridge reduced about 20%.Compared with the hard encapsulation,the same inclusion in the soft encapsulation has the larger influence in weakening the maximum value of stetchablity.The conclusions obtained have the reference and guidance significances in designing the flexible electronic structure and choosing the suitable materials.
机构地区 浙江大学
出处 《应用力学学报》 CAS CSCD 北大核心 2012年第3期345-348,360,共4页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(10832009 10972194) 浙江省自然科学基金(Y7080297)
关键词 柔性电子 夹杂 岛-桥结构 最大延伸量 封装形式 flexible electronics,inclusions,island-bridge structures,stretchability,ways of encapsulation
  • 相关文献

参考文献10

  • 1Ko H, Stoykovich M, Song J, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics[J]. Nature, 2008, 454(7205): 748-753.
  • 2Forrest S R. The path to ubiquitous and low-cost organic electronic appliances onplastic[J]. Nature, 2004, 428(6986): 911-918.
  • 3Lumelsky V J, Shur M S, Wagner S. Sensitive skin[J]. IEEE Sensors Journal, 2001, 1(1): 41-51.
  • 4Meitl M, Zhu Z, Kumar V, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp[J]. Nature Materials, 2006, 5(1).. 33-38.
  • 5Choi W, Song J, Khang D Y, et al. Biaxially stretchable 'wavy' silicon nanomembranes[J]. NanoLctters, 2007, 7(6): 1655-1663.
  • 6Jiang H, Khang D Y, Song J, et al. Finite deformation mechanics in buckled thin films on compliant supports[J]. PNAS, 2007, 104(40): 15607-15612.
  • 7Gonzalez M, Hsu Y, Vandevelde B, et al. Design and performance of metal conductors for stretchable electronic circuits[J]. Circuit Word, 2009, 35(1): 22-29.
  • 8Kim D, Song J, Choi W, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations[J]. PNAS, 2008, 105(48): 18675-18680.
  • 9Brown X Q, Ookawa K, Wong J Y. Evaluation of polydimethylsiloxane scaffolds with physiologically relevant elastic moduli.- interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response[J]. Biomaterials, 2005, 26(16): 3123-3129.
  • 10Kim D, Liu Z, Kim Y, et al. Optimized structural designs for stretchable silicon integrated circuits[J]. Small, 2009, 5(24) : 2841-2847.

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部