期刊文献+

转子-轴承系统混沌运动的神经网络反馈控制方法 被引量:1

Feedback control for chaotic motion of a rotor-bearing system with an intelligent neural network
下载PDF
导出
摘要 用神经网络技术对刚性Jeffcott转子-轴承系统进行混沌滞延反馈控制研究。研究结果表明:当转子-轴承系统进入混沌状态后,引入时间滞延反馈控制信号,可以消除转子-轴承系统的混沌振动,使嵌入在混沌吸引子中的不稳定周期轨道回到稳定周期轨道上。采用间接误差计算的BP神经网络学习方法和自适应学习率BP算法结合而形成的改进型BP神经网络方法,可以快速搜寻到次优化的滞延反馈控制强度,从而即时有效地消除转子-轴承系统的混沌振动。一旦混沌振动回归稳态周期振动,则反馈控制信号自动消失。该方法为控制转子-轴承系统的振动状态提供了理论依据,特别是对工程实际转子系统有实用价值。 Here, the control of chaotic vibration using a neural network for a rigid Jeffcott rotor system supported on short journal bearings was presented. The study results demonstrated that a feedback control signal is applied to the rotor- bearing system, an unstable periodic orbit embedded in a chaotic attractor is attracted back to a stable periodic orbit; from learning of the neural network, the time-delay feedback control gain is automatically traced. Numerical simulations showed that with a short time, a chaotic vibration is stabilized effectively and then the feedback signal automatically disappears. This method offered a theoretical basis for control of chaotic vibration of a rotor-bearing system, especially, for rotor systems in engineering practice.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第11期145-148,共4页 Journal of Vibration and Shock
关键词 混沌控制 非线性动力学 神经网络 吸引子 转子-轴承系统动力学 chaos control nonlinear dynamics neural network attractor rotor-bearing system dynamics
  • 相关文献

参考文献12

  • 1Shen G Y, Xiao Z H, Zhang W, et al. Nonlinear behavior analysis of a rotor supported on fluid-film bearing[ J ]. Journal of Vibration and Acousti-cs, 2006,128 : 35 - 40.
  • 2徐小峰,张文.一种非稳态油膜力模型下刚性转子的分岔和混沌特性[J].振动工程学报,2000,13(2):247-253. 被引量:65
  • 3Das A S, Nighil M C, Dutt J K. Vibration control and sta-bility analysis of rotor-shaft system with electromagn-eticexciters [ J ]. Mechanism and Machine Theory, 2008, 43:1295 -1316.
  • 4Fan C C,Pan M C. Fluid-induced instability elimination of rotor- bearing system with an electro-magnetic exciter [ J ]. International Journal of Mechanical Sciences ,2010,52:581 - 589.
  • 5Yong K. Theory of intelligent neural network [ M ]. D.P.R. Korea Pyongyang University of Science Press: Kim Yong Hi ,2009.
  • 6Ramesh M, Narayanan S. Chaos control of Bonhoeffer-Van der Pol oscillator using neural networks [ J ]. Chaos, Solitons and Fractals, 2001,12:2395 - 2405.
  • 7谭文,王耀南,刘祖润,周少武.非线性系统混沌运动的神经网络控制[J].物理学报,2002,51(11):2463-2466. 被引量:32
  • 8Qin W Y, Yang Y F, Zhang J F. Controlling the chaotic response to a prospective external signal using back- propagation neural networks [ J ]. Nonlinear Analysis : Real World Application ,2009,10:2985 - 2989.
  • 9Pyragas K. Continuous control of chaos by self-controlling feedback[ J]. Phys Lett A, 1992,170:421 -428.
  • 10Hiroyuki N J. On analytical properties of delayed feedback control of chaos[ J]. Phys Lett A, 1997,232:207 - 210.

二级参考文献7

  • 1张慧生,复旦学报,1998年,37卷,5期,583页
  • 2张文,工程力学进展,1998年,158页
  • 3Zhang Wen,Asia Pacific Vibration Conference’97,1997年,9页
  • 4徐小峰,振动与冲击,1997年,16卷,增刊,30页
  • 5张文,转子动力学理论基础,1990年,172页
  • 6张直明,滑动轴承的流体动力润滑理论,1987年
  • 7张宇,陈予恕,毕勤胜.转子-轴承-基础非线性动力学研究[J].振动工程学报,1998,11(1):24-30. 被引量:23

共引文献95

同被引文献11

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部