期刊文献+

用重节点差商法求解3n+2次Hermite插值问题

Solving the 3n+2 Orders Hermite Interpolation Problems with the Method of Difference Quotient
下载PDF
导出
摘要 用重节点差商法求解Hermite插值问题,在已有的成果基础上,针对节点数完全匹配的情况,建立了带导数的Hermite插值公式,进行了相应的误差估计,并通过具体的求解例子与现有的Lagrange基函数法作了比较,显示所用方法的优越性. This paper mainly considers the Hermite interpolation problems with the method of divided difference at the same node. Based on the existing results, it studies the Hermite interpolation functions with derivative whose number of nodes is completely matching, builds some Hermite interpolating for- mulas with derivatives, and also gives the corresponding error estimate. Some numerical examples are presented to compare the proposed method with the existing Lagrange primary function method to show its advantage.
作者 乐依赟 蔡静
出处 《湖州师范学院学报》 2012年第1期27-31,共5页 Journal of Huzhou University
基金 浙江省自然科学基金(Y6110043) 国家特色专业建设点"数学与应用数学"资助
关键词 HERMITE插值 重节点差商法 误差估计 Hermite interpolation divided difference at same node error estimate
  • 相关文献

参考文献6

二级参考文献32

  • 1冯天祥.用重节点差商法求解埃尔米特插值函数[J].西南交通大学学报,2005,40(2):273-276. 被引量:5
  • 2杨士俊,王兴华.Hermite插值多项式的差商表示及其应用[J].高校应用数学学报(A辑),2006,21(1):70-78. 被引量:13
  • 3颜宁生.最简型的Hermite插指[J].应用数学与计算数学学报,2006,20(1):75-81. 被引量:7
  • 4王兴华.求导数零点的一个二阶收敛的迭代方法[J].计算数学,1979,1(3):209-220.
  • 5Tan jie-qing, Zhou Ping. On the finite sum representations of the Lauricella functions Fn [J]. Advances Comp. Math. 2005, 23: 333-351.
  • 6Cuyt A, Driver K.Lubinsky D. A direct approach to convergence of multivariate nonhomogeneous Pade approximants[J]. Comp. Appl. Math, 1996, 69:353-366.
  • 7Cuyt A, Tan Jieqing, Verdonk B. Exploring multivariate Pade approximants for mulltiple hypergeometric Series [J]. Advances Comp. Math, 1999, 10: 29-49.
  • 8Zhou Ping. Explicit construction of multivariate Pade approximants[J]. Comp. Appl. Math, 1997, 79: 1-17.
  • 9Zhou Ping. Multivariate Pade approximants associated with functional relations[J]. Approx. Theory, 1998, 93: 201-230.
  • 10Cuyt A. Driver K. Tan Jieqing, Verdonk B. A finite sum representation of the Appell series F1 (a,b,b';c;x,y) [J]. Comp. Appl. Math, 1999, 105: 213-219.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部