摘要
对于一个简单图G,方阵Q(G)=D(G)+A(G)称为G的无符号拉普拉斯矩阵,其中D(G)和A(G)分别为G的度对角矩阵和邻接矩阵.一个图是Q整图是指该图的无符号拉普拉斯矩阵的特征值全部为整数.首先通过Stanic得到的六个顶点数目较小的Q整图,构造出了六类具有无穷多个的非正则的Q整图.进而,通过图的笛卡尔积运算得到了很多的Q整图类.最后,得到了一些正则的Q整图.
Let G be a simple graph.The matrix Q(G)= D(G)+ A(G)denotes the signless Laplacian matrix of G,where D(G)and A(G)denote the diagonal matrix and the adjacency matrix of G respectively.A graph is called Q-integral if its signless Laplacian spectrum consists entirely of integers.In this paper,we firstly construct six infinite classes of nonregular Q-integral graphs from the known six smaller Q-integral graphs identified by Stanic.Furthermore,we obtain large families of Q-integral graphs by the Cartesian product of graphs.Finally,we obtain some regular Q-integral graphs.
出处
《运筹学学报》
CSCD
北大核心
2012年第2期23-31,共9页
Operations Research Transactions
基金
Supported by the National Natural Science Foundation of China(No.11171273)
the Natural Science Foundation of Shaanxi Province(No.SJ08A01)
SRF for ROCS,SEM
关键词
无符号拉普拉斯谱
Q整图
整图
整特征值
signless Laplacian spectrum; Q-integral graph; integral graph; integral eigenvalues