期刊文献+

Q整图新类(英文) 被引量:1

Some new families of Q-integral graphs
下载PDF
导出
摘要 对于一个简单图G,方阵Q(G)=D(G)+A(G)称为G的无符号拉普拉斯矩阵,其中D(G)和A(G)分别为G的度对角矩阵和邻接矩阵.一个图是Q整图是指该图的无符号拉普拉斯矩阵的特征值全部为整数.首先通过Stanic得到的六个顶点数目较小的Q整图,构造出了六类具有无穷多个的非正则的Q整图.进而,通过图的笛卡尔积运算得到了很多的Q整图类.最后,得到了一些正则的Q整图. Let G be a simple graph.The matrix Q(G)= D(G)+ A(G)denotes the signless Laplacian matrix of G,where D(G)and A(G)denote the diagonal matrix and the adjacency matrix of G respectively.A graph is called Q-integral if its signless Laplacian spectrum consists entirely of integers.In this paper,we firstly construct six infinite classes of nonregular Q-integral graphs from the known six smaller Q-integral graphs identified by Stanic.Furthermore,we obtain large families of Q-integral graphs by the Cartesian product of graphs.Finally,we obtain some regular Q-integral graphs.
出处 《运筹学学报》 CSCD 北大核心 2012年第2期23-31,共9页 Operations Research Transactions
基金 Supported by the National Natural Science Foundation of China(No.11171273) the Natural Science Foundation of Shaanxi Province(No.SJ08A01) SRF for ROCS,SEM
关键词 无符号拉普拉斯谱 Q整图 整图 整特征值 signless Laplacian spectrum; Q-integral graph; integral graph; integral eigenvalues
  • 相关文献

参考文献7

  • 1Cvetkovic D, Rowlinson P, Simid S. Signless Laplacian of finite graphs [J]. Linear Algebra Appl, 2007, 423: 155-171.
  • 2Grone R, Merris R, Sunder V S. The Laplacian spectrum of a graph [J]. SIAM J Matrix Anal Appl, 1990, 11: 218-238.
  • 3Merris R. Laplacian graph eigenvectors [J]. Linear Algebra Appl, 1998, 278: 221-236.
  • 4Merris R. Multilinear Algebra [M]. New York: Gordon & Breach, 1997.
  • 5Petrovic M, Radosavljevid Z. Spectrally Constrained Graphs [M]. Kragujevac: Faculty of Science, 2001.
  • 6Simic S K, Stanid Z. Q-integral graphs with edge-degrees at most five [J]. Discrete Math, 2008, 308: 4625-4634.
  • 7Stanic Z. There are exactly 172 connected Q-integral graphs up to 10 vertices [J]. Novi Sad J Math, 2007, 37(2): 193-205.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部