期刊文献+

碳纳米管CNT(5,5)内环氧乙烷的阴离子聚合机理 被引量:3

Anionic Polymerization Mechanism of Ethylene Oxide within CNT(5,5)
下载PDF
导出
摘要 采用B3LYP/6-311++G**和ONIOM(B3LYP/6-311++G**:UFF)方法分别对环氧乙烷非受限状态以及在单壁碳纳米管CNT(5,5)内的阴离子聚合反应进行计算。结果表明,环氧乙烷与其亲核试剂(OH-)进攻产物形成的复合物进入CNT(5,5)碳纳米管内是一个放热过程,说明反应复合物进入CNT(5,5)形成包结物在能量上是有利的。由于碳纳米管的限制作用,环氧乙烷阴离子聚合的反应物、过渡态以及产物的结构与非受限状体下有所不同,在碳纳米管内的反应过程中分子构型会发生一定的扭转,以适应碳纳米管内的空间限制。与非受限状相比,环氧乙烷阴离子聚合反应的活化能垒增加了13.2 kcal/mol,表明碳纳米管CNT(5,5)对环氧乙烷阴离子聚合反应起到一定的抑制作用。 Anionic polymerization mechanism of ethylene oxide(EO) confined inside a single-walled carbon nanotube,CNT(5,5),was calculated at the ONIOM(B3LYP/6-311++G**:UFF) level of theory.Meanwhile,the polymerization of EO in the isolated state was also calculated at the B3LYP/6-311++G** method.We found that the encapsulation process was exothermic and favored in energy when the complex,which was formed by the EO and the EO/nucleophile(OH-) adduct,was entranced into CNT(5,5).Due to the confinement of CNT(5,5),the geometric parameters of reactant,transition state and product within nanotube were different from the corresponding parameters in the isolated state.During the reaction process of EO complex inside nanotube,rotation of the molecular configuration occurred for the EO complex in order to adapt to the inner space of nanotube.The energy calculation showed that the activation energy of the anionic polymerization within nanotube was 13.2 kcal/mol higher than the value in the case of the isolated state,which suggested that that the anionic polymerization of ethylene oxide was inhibited by the confinement in CNT(5,5).
出处 《武汉纺织大学学报》 2012年第3期30-33,共4页 Journal of Wuhan Textile University
基金 湖北省教育厅科学研究计划项目资助(Z20101601)
关键词 碳纳米管 环氧乙烷 受限作用 阴离子聚合 Carbon Nanotube Ethylene Oxide Confinement Effect Anionic Polymerization
  • 相关文献

参考文献14

  • 1Iijima S. Synthesis of carbon nanotubes[J].Nature,1991.56-58.
  • 2Qi Li,Lijie Dong,Jingfei Fang,Chuanxi Xiong. Property-Structure Relationship of Nanoscale Ionic Materials Based on Multiwalled Carbon Nanotubes[J].ACS Nano,2010,(10):5797-5806.
  • 3Lei Y,Xiong C,Dong L. Ionic Liquid of Ultra-long Carbon Nanotubes[J].Small,2007,(11):1889-1893.
  • 4Lei Y,Xiong C*,Guo H. Controlled Viscoelastic Carbon Nanotube Fluids[J].Journal of the American Chemical Society,2008.3256-3257.
  • 5Charlier J C,Limbin P H. Electronic structure of carbon nanotubes with chiral symmetry[J].Physical Review B:Condensed Matter,1998,(24):15037-15039.
  • 6Halls M D,Bernhare S H. Chemical inside carbon nanotubes:The menshutkin SN2 reaction[J].Journal of Physical Chemistry B,2002,(37):1921-1925.
  • 7Halls M D,Raghavachari K. Carbon nanotube inner phase chemistry:The Cl-exchange SN2 reaction[J].Nano Letters,2005,(10):1861-1866.
  • 8王罗新,许杰,邹汉涛,易长海.手性和尺寸对受限于单壁碳纳米管内的硝基甲烷热解反应的影响[J].物理化学学报,2010,26(3):721-726. 被引量:7
  • 9Luoxin Wang,Changhai Yi,Hantao Zou. On the isomerization and dissociation of nitramide encapsulated inside an armchair(5,5) single-walled carbon nanotube[J].Materials Chemistry and Physics,2011.232-237.
  • 10Luoxin Wang,Changhai Yi,Hantao Zou,Houlei Gan,Jie Xu,Weilin Xu. Adsorption of insensitive explosive TATB on single-walled carbon nanotubes[J].Molecular Physics,2011.1841-1849.

二级参考文献53

共引文献16

同被引文献43

  • 1王文清,刘轶男,龚䶮.手性分子中的宇称破缺:D-和L-丙氨酸的变温中子结构研究(英文)[J].物理化学学报,2004,20(11):1345-1351. 被引量:43
  • 2George H F,Antimo D'Aniello,Amedeo V,et at. Free D-aspartate and D-alanine in normal and Alzheimer brain. Brain Research Bulletin, 1991, 26(6) :983-985.
  • 3Robert J T, Archie Bouwer H G, Daniel A P, et al. Pathogenicity and immunogenicity of a listeria monocytogenes strain that requires D-alanine for growth. Infection and Immunity, 1998, 66 (8): 3552-3561.
  • 4Stepanian S G, Reva I D, L. Adamowicz, et al. Conformational behavior of a-alanine matrix- isolation infrared and theoretical DFT and ab initio study. Physical Chemistry A, 1998, 102 (24) ..4623-4629.
  • 5Svensson M, Humbel S, Froese R D J, et al. ONIOM: A multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels-Alder reactions and Pt ( P (t-Bu) 3 ) 2 q- H2 oxidative addition. Physical Chemistry, 1996, 100 (50) : 19357-19363.
  • 6Becke A D. Density-functional thermochemistry. III. The role of exact exchange. Chemical Physics, 1993, 98(7) :5648.
  • 7Rappe A K, Casewit C J, Colwell K S, et al. UFF,a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 1992, 114(25) :10024-10053.
  • 8Garrett B C, Truhlar D G. Generalized transition state theory. Classical mechanical theory and ap- plications to collinear reactions of hydrogen molecules. Journal of Physical Chemistry, 1979, 83(83:1052-1079.
  • 9Garrett B C, Truhlar D G. Criterion of minimum state density in the transition state theory of hi- molecular reactions. The Journal of Chemical Physics, 1979,70(4) .. 1593-1598.
  • 10Ishida K, Morokuma K, Komornicki A. The intrinsic reaction coordinate. An ab initio calculation for HNC→ HCN and H - + CH4 → CH4+H→. The Journal of Chemical Physics, 1977,66(5) :2153-2156.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部