摘要
在非自治二阶系统解得讨论中,通过将系统的约束空间分解为两个子空间的直和,利用子空间的特性,运用鞍点归约方法,先在子空间上寻找解,进而推广到约束空间上的解,得到了关于非自治二阶系统新的解的存在性定理。
In considering the non-autonomous second order system, we divided the space of the system into two subspaces. By the virtue of characterize of the subspaee, we applied the saddle point reduction method to the subspace, and found the solution in the subspace. Hence, we gained a new existences theorem on the non-autonomous second order system in the space.
出处
《钦州学院学报》
2012年第3期13-15,共3页
Journal of Qinzhou University
基金
钦州学院校级立项项目:一类非自治系统的变分问题(2011XJKY-35C)
钦州学院校级立项项目:半开集和α开集的进一步研究(2011XJKY-16B)
关键词
归约方法
非自治二阶系统
鞍点
反强制
the reduction methods
the non-autonomous second order system
saddle point
inverse-coerive.