期刊文献+

基于独立元分析算法的过程故障检测方法

Process Fault Detection Method Based on Independent Component Analysis Algorithm
下载PDF
导出
摘要 文章针对目前实际工业生产中变量不能严格服从高斯分布,且大量变量之间存有严重相关性的特点,运用ICA方法提取高维数据中独立的信号,在保留数据信息的前提下对噪声加以抑制。信号提取后分别构造监控统计量,实施过程监控和故障诊断,并利用独立元模型对CSTR仿真实时数据进行故障检测研究,仿真结果表明该方法能快速准确的检测到运行中发生的异常。 The actual industrial processing variables could not be strictly Gaussian distribution.There was a serious correlation between the large number of variables.Independent signals could be extracted from high-dimensional datas in the ICA method.Noise to be suppressed.Subjected to the provisions of retain the data messages.The extracted sign-als could be constructed the monitoring statistics,therefore Implement process monitoring and fault diagnosis.A simul-ation of CSTR Breal-time data was analysed.Simulation results showed that ICA method couldrapidly and accurately dete-cted the exception occurred in the production processes.
作者 吴迪
出处 《广东化工》 CAS 2012年第6期209-210,212,共3页 Guangdong Chemical Industry
关键词 独立元分析 过程监控 故障诊断 ICA process monitoring fault diagnosis
  • 相关文献

参考文献5

二级参考文献29

  • 1郭明,王树青.基于独立分量分析的系统性能监控方法研究[J].浙江大学学报(工学版),2004,38(6):665-669. 被引量:12
  • 2陈国金,梁军,刘育明,钱积新.基于多元统计投影方法的过程监控技术研究[J].浙江大学学报(工学版),2004,38(12):1561-1565. 被引量:10
  • 3刘飞,吴昌应.一种基于非线性独立元分析(NICA)的化工过程监控方法[J].华东理工大学学报(自然科学版),2006,32(7):806-809. 被引量:1
  • 4KU W, STORET R H, GEORGAKIS C. Disturbance detection and isolation by dynamic principal component analysis [J]. Chemistry Chemometrics and Intelligent Laboratory Systems, 1995, 30:179-196.
  • 5HYVARINEN A, OJA E. Independent component analysis: algorithms and applications [J]. Neural Networks, 2000, 13(4-5):411-430.
  • 6HYVARINEN A. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Transactions on Neural Networks, 1999, 10(3):626-634.
  • 7LI R F, WANG X Z. Dimension reduction of process dynamic trends using independent component analysis [J]. Computers and Chemical Engineering, 2002, 26:467-473.
  • 8DOWNS J J, VOGEL E F. A plant-wide industrial process control problem [J]. Computers and Chemical Engineering, 1993, 17(3):245-255.
  • 9MCAVOY T J, YE N. Base control for the Tennessee Eastman problem [J]. Computers and Chemical Engineering, 1994, 18:383-413.
  • 10KANO M, HASEBE S,HASHIMOTO I. A new multivariate statistical process monitoring method using principal component analysis [J]. Computers and Chemical Engineering, 2001, 25:1103-1113

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部