期刊文献+

脑磁感应断层成像技术的敏感性分析及图像重建 被引量:1

Analysis of Sensitivity Characteristic and Image Reconstruction for Brain Magnetic Induction Tomography
下载PDF
导出
摘要 为了分析脑磁感应断层成像(MIT)技术的敏感性,利用三层同心圆的简单头模型讨论了颅内血肿电导率大小、颅内血肿面积、颅内血肿位置及颅骨电导率大小对接收线圈上感生电压的影响,并利用变差正则化方法对三个不同位置的血肿进行了仿真重建.仿真结果表明:低电导率的颅骨对接收线圈上感生电压的影响不大,且利用变差正则化方法所获得的重建图像可以大致反映出颅内血肿的位置和大小.与Tikhonov正则化方法相比,重建图像的质量也得到了一定的提高,所以此方法为脑MIT的图像重建提供了一种有效的途径. To analyze the sensitivity of brain magnetic induction tomography(MIT),a simple three-shell concentric circular head model was presented.The influences of hematomas conductivity,hematomas area,hematomas location and skull conductivity on the induced voltage of receiving coil were discussed,and the reconstructed image was obtained by using variation regularization method for three different hematomas locations.Simulation results showed that low conductivity of the skull had little effect on the induced voltage of the receiving coil.The location and size of hematomas could be reflected by the reconstructed image using the variation regularization method.Compared with the Tikhonov regularization method,the quality of the reconstructed image obtained using the variation regularization method was enhanced.So an effective method for brain magnetic induction tomography was introduced.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第6期782-785,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50477015) 中央高校基本科研业务费青年教师科研启动基金资助项目(N100304008)
关键词 磁感应断层成像(MIT) 血肿 感生电压 变差正则化 TIKHONOV正则化 图像重建 magnetic induction tomography(MIT) hematomas induced voltage variation regularization Tikhonov regularization reconstructed image
  • 相关文献

参考文献8

  • 1Griffitks H. Magnetic inductkm tomogrlthy [J] Measurement Scieme a ml Technology , 2001,12 ( 8 ) : 1126 - 1131.
  • 2Korjenevsky A, Cherepenin V, petsky S. Magnetic induction tomcraphv exlerinwmal realization [ J ]. PhysiolJgical Measuremett, 2000, 21 ( 1 ) : 89 - 94.
  • 3Merwa R, Hollus K, Scharfetler H. Numerical .solulion of the general 3D eddy currem problem for magnetic induclkm tomography (spectroscopy)[J]. Physiological Measurptelt , 2003,24(2):545 -554.
  • 4Kim Y, Webster J G,Tompkins W J. Electrical impedance imaging of the thorax [J]. The Journal of Microeare', 1983,18:245 257.
  • 5Mecson S, Killingback A L T. Blou It H. The depndencc of EIT images on the assumed initial conductivity dislriblution: a study of pelvic imaging[J]. Physics in Medicbe and Biology, 1995,40 (5) : 643 - 657.
  • 6Brown B H. Cardiac rind respiratory related electrical impedance changes in the human thorax [ J ]. IP2EE Trangwtions on Biomedical Engigeering, 1994,41 (8) : 729 - 733.
  • 7王聪,董秀珍,刘锐岗,李烨.在简单头模型上的磁感应断层成像仿真图像重建[J].系统仿真学报,2009,21(1):50-53. 被引量:8
  • 8陈玉艳,王旭,吕轶,杨丹.基于Tikhonov和变差正则化的磁感应断层成像重建算法[J].东北大学学报(自然科学版),2011,32(4):460-463. 被引量:10

二级参考文献19

  • 1黄嵩,何为.电阻抗成像中混合罚函数正则化算法的仿真研究[J].计算机仿真,2006,23(4):94-98. 被引量:2
  • 2Griffiths H. Magnetic induction tomography [J]. Meas. Sci. Technol. (S0957-0233), 2001, 12(8): 1126-1131.
  • 3Tidswell A T, Gibson A, Bayford R H. Electrical impedance tomography of human brain activity with a two-dimensional ring of scalp electrodes [J]. Physiol. Meas. (S0967-3334), 2001, 22(1): 167-175.
  • 4AL-ZEIBAK S, SAUNDERS N H. A feasibility study of in vivo electromagnetic imaging [J]. Phys. Med. Biol. (S0031-9155), 1993, 38(1): 151-60.
  • 5JOHANNES N, EWALD F, SABINE H. Contactless impedance measurement by magnetic induction-a possible method for investigation of brain impedance [J]. Physiol. Meas. (S0967-3334), 1993, 14(4): 463-471.
  • 6MERWA R, HOLLAUS K, BRANDSTTTER B, SCHARFETTER H. Numerical solution of the general 3D eddy current problem for magnetic induction tomography (spectroscopy) [J]. Physiol. Meas. (S0967-3334), 2003, 24(2): 545-554.
  • 7MERWA R, HOLLAUS K, BRUNNER P and SCHARFETTER H. Solution of the inverse Problem of magnetic induction tomography (MIT) [J]. Physiol. Meas. (S0967-3334), 2005, 26(5): 241-250.
  • 8SOLEIMANI M, JERSEY-WILLUHN K. Image reconstruction for magnetic induction tomography [C]// Proceedings of the 26th annual international conference of the IEEE EMBS, 2004. USA: IEEE, 2004: 631-634.
  • 9XU P. Truncated SVD methods for discrete linear ill-posed problems [J]. Geophys. J. Int. (S0956-540X), 1998, 135(2): 505-514.
  • 10Yorkey T J, Webster J G. Tompkins W J. Comparing Reconstruction Algorithms for Electrical Impedance Tomography [J]. IEEE Trans. Biomed. Eng. (S0018-9294), 1987, 34(11): 843-852.

共引文献16

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部