期刊文献+

抛物方程解的完全爆破时间关于初值的依赖性

The Continuous Dependence on Initial Value of Complete Blow-up-time of Solutions for a Parabolic Equation
下载PDF
导出
摘要 研究了一类抛物方程解的完全爆破时间关于初值的连续依赖性,其中方程源项为分段连续的函数.先利用椭圆型方程特征函数的相关性质给出了完全爆破时间与任意非爆破时间之间的关系,再运用有限覆盖定理及解的性质证明了结论. The continuous dependence on initial value of complete blow-up-time of solutions of a class of parabolic equation was considered, in which the source item was piecewise continuous function. Firstly using the relative properties of the function on elliptic equation to give a relation between complete blow-up-time and any non-blow-up-time, then through the theorem of finite covering and the properties of solutions to prove the conclusion.
机构地区 集美大学理学院
出处 《集美大学学报(自然科学版)》 CAS 2012年第3期223-227,共5页 Journal of Jimei University:Natural Science
关键词 抛物方程 完全爆破时间 连续依赖 parabolic equation complete blow-up-time continuous dependence
  • 相关文献

参考文献8

  • 1CAO D L, WANG J P. Continuously dependent on boundary value for solution of semi-liner heat-conduction equation [J]. J Math, 2008, 23(1): 140-143.
  • 2JIA Q P. The Continuous dependence on nonlinearities of solutions of the Neumann problem of a singular parabolie equation [J]. Nonlinear Analysis, 2007, 67: 2081-2090.
  • 3张新华.一类非线性抛物方程组解的爆破性[J].工程数学学报,2003,20(3):19-23. 被引量:2
  • 4魏英杰,邬娟.一类拟线性退化抛物型方程组解的存在性与爆破[J].吉林大学学报(理学版),2010,48(3):406-408. 被引量:6
  • 5向以华,查中伟.非线性抛物型方程初边值问题解的Blow up性质[J].数学杂志,2009,29(4):521-525. 被引量:2
  • 6NORIKO MIZOGUCHI, FERNANDO QUIROS, JUAN LUIS VAZQUEZ. Multiple blow-up for a porous medium equation with reaction [J]. Math Ann, 2011, 350: 801-827. V.
  • 7AZQUEZ J L. An introduction to the mathematical theory of the porous medium equation [ C ] //Kluwer Academic Dordrecht. Shape Optimization and Free Boundaries. Boston and Leiden: Kluwer Academic Publisher, 1992: 347-389.
  • 8ESTEBAN J R, RODRIGIEZ A, VAZQUEZ J L. A nonlinear heat equation with singular diffusivity [ J]. Commun Partial Differential Equations, 1988, 13: 985-1039.

二级参考文献20

  • 1张健,杜心华.交互扩散系统的爆破性质[J].四川师范大学学报(自然科学版),1992,15(1):63-68. 被引量:5
  • 2查中伟.拟线性抛物方程解的爆破性质及其应用[J].四川大学学报(自然科学版),2006,43(4):738-743. 被引量:3
  • 3Chipot M. , weissler F. B. , Some blow up results for a nonlinear parabolic equation with a gradient term [J]. SIAM J * Math. Anal., 1989, (20)4:886-907.
  • 4管志成.一类非线性抛物型方程解的blow up.数学年刊:A辑,1984,5(2):177-180.
  • 5邓聚成.一类反应扩散方程解的blow up.应用数学学报,1987,10(4):450-456.
  • 6Gomez J. L. , Wolanski N.. Blow-up results and localization of blow-up points for the heat equation with a nonlinear boundary condition[J]. J. Diff. Eqs. , 1991, 92(2) : 384-401.
  • 7Mizoguchi N.. Yanagida E. , Crilical exponent for the blow up of solutions with sign changes in a semi linear parabolic equation[J], Math. Ann. 1997, 307 :663-675.
  • 8ZHAO Jun-ning.Existence and Nonexistence of Solutions for ut=div(up-2u)+f(u,u,x,t)[J].J Math Anal Appl,1993,172(1):130-146.
  • 9LI Fu-cai.Global Existence and Blow-up of Solutions to a Nonlocal Quasilinear Degenerate Parabolic System[J].Nonlinear Analysis,2007,67(5):1387-1402.
  • 10ZHANG Rui,YANG Zuo-dong.Global Existence and Blow-up Solutions and Blow-up Estimates for a Non-local Quasilinear Degenerate Parabolic System[J].Appl Math Comput,2008,200(1):267-282.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部