期刊文献+

梯度投影算子Ishikawa迭代的强收敛性 被引量:1

The Strong Convergence of Ishikawa Iterative Sequence for Gradient Projection Operators
下载PDF
导出
摘要 为证明所要结果,首先给出一个梯度投影算子的Ishikawa迭代的CQ变形,并证明它的强收敛性.然后给出一个Ishikawa形式的黏性变形,结合适当条件证明梯度投影算子的强收敛性. In order to prove our desired result, an Ishikawa iterative CQ deformation is first worked out for the Gradient projection operator, and the strong convergence of which is then proved. And a viscous deformation in Ishikawa form is presented. In combination with certain suitable conditions, the strong convergence of the gradient projection operators is proved, and the results obtained greatly improve the results published in the latest literatures.
作者 侯春兰
出处 《内江师范学院学报》 2012年第6期11-14,共4页 Journal of Neijiang Normal University
基金 教育部科学技术重点项目(211163)
关键词 ISHIKAWA迭代 梯度投影算子 强收敛 CQ方法 黏性逼近 Ishikawa iterative sequence gradient projection operator Strong convergence CQ method Viscosity approximation
  • 相关文献

参考文献8

  • 1Su M, Xu H K. Remarks on the gradient-Projection al- gorithm J. Journal of Nonlinear Analysis and Optimi- zation, 2011, 1(1): 35-43.
  • 2Polyak B T. Introduction to optimization [-M. New York: Optimization Software, 1987.
  • 3Levetin ES, Polyak BT. Constrained minimization meth- ods J. USSR Comptational Mathematics and Math- emateal Physics, 1966, 6(5) .. 1-50.
  • 4Xu H K Averaged Mappings and the Gradient-Projection Algorithm [J] Journal of Optimzation Theory and Ap- plications, 2011, 150(2) : 360-378.
  • 5Martinez-Yanes C,Xu H K. Strong convergence of the CQ method for fixed point iteration processes [-J. Non- linear Analysis: Theory, Methods and Application, 2006, 64(11): 2400-2411.
  • 6Browder F E. Convergence of approximations to fixed points of nonexpansive mappings in Banach spaces EJ- Archice Archire For Rational Mechanics ang Analysis. 1967, 24(1): 82-89.
  • 7Combettes P L. Solving monotone inclusions via compo- sitions of nonexpansive averaged operators [-J. Optimi zation, 2004, 53(5): 475-504.
  • 8Baillon J B, Haddad G. Quelques proprietes des opera- teurs ang|e-bornes et n-cycliquement monotones J. Is- rael Journal of Mathematics1977, 26(2) .. 137-150.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部