期刊文献+

开口薄壁杆的板件面内拉弯综合抗力体系 被引量:1

Slabs' In-plane Tension-bending Resistance System of Thin-walled Open-profile
下载PDF
导出
摘要 针对薄壁杆件力学分析较为复杂的问题,讨论了一种把开口薄壁杆的分析拆分为2个较简单部分的方法。针对薄壁中面内荷载效应的分析问题,首先在适当简化基本应力应变条件的基础上,按平面应力问题分析单肢板件面内荷载效应,然后对其进行向量综合,得到反映开口薄壁杆轴向伸缩、弯曲及翘曲性质的"板件面内拉弯综合抗力体系"及其变形方程;探讨了刚度方程的建立及其计算特点,并与经典理论进行对比。分析表明,在板件面内弯矩定义中引入板件间纵向相互作用力,可简化该体系分析过程和结论,使之具备与平面弯曲问题一致的形式。作为应用举例,推导了求解薄壁截面主轴方向、主轴惯性矩、弯心坐标、主扇性惯性矩的线性方程组,剖析了经典理论中这些截面几何特性对于计算的意义及其效率。 In order to simplify the analyses of thin-walled open-profile bars, a thin-walled bar was split into two parts which were dominated by in-plane and out-plane loading effects respectively. The in-plane loading effects were focused. On the basis of appropriate simplified stress and strain conditions, each plate was analyzed and the results were integrated into vectors, resulting in the slabs' in-plane tension-bending resistance system of thin-walled open-profile bars, which reflects their axial stretch/compression, bending and warping properties. And then the deformation equation and the stiffness equation were set up. Because longitudinal interaction forces between plates were introduced in the definition of the plates' in-plane bending moments, the deduction and conclusions here were consistent in form with those in bending theory. Principal axes' directions, shear center's coordinates, principal inertia moments and sectorial inertia moment of thin-walled open sections can be deduced by the slabs-disassembled method proposed here. Lateral deformed bars' analysis based on those sectional parameters in classical theory is proved to be inefficient, where additional "rigid contour hypothesis" has to be introduced.
出处 《土木建筑与环境工程》 CSCD 北大核心 2012年第3期58-64,共7页 Journal of Civil,Architectural & Environment Engineering
基金 中央高校基本科研业务费资助项目(CDJRC10200004 CDJZR10200019) 高等学校博士学科点专项科研基金资助项目(20110191120034)
关键词 薄壁结构 单肢解析化方法 翘曲 扭转 扇性惯性矩 刚度矩阵 thin-walled structures slabs-disassembled method warping torsion sectorial inertia moment stiffness matrix
  • 相关文献

参考文献16

  • 1Vlasov V Z. Thin-Walled Elastic Beams [M]. 2nd ed Jerusalem: Israel Program for Scientific Translations 1961.
  • 2Benscoter S U. A theory for torsion and bending for multicell beams [J]. Journal of Applied Mechanics, 1954, 21: 25-34.
  • 3Kollbrunner C F, Basler K. Torsion in Structures [M]. Berlin: Springer-Verlag, 1969.
  • 4杨绿峰,任晓军,陈建芳,祝云琪.有限元法研究闭口薄壁杆件约束扭转[J].广西大学学报(自然科学版),2008,33(1):1-4. 被引量:14
  • 5Gunnlaugsson G A, Pedersen P T. A finite element formulation for beams with thin walled cross-sections [J]. Computers & Structures, 1982, 15(6): 691-699.
  • 6Hu Y R, Jin X D, Chen B Z. A finite element model for static and dynamic analysis of thin-walled beams with asymmetric cross-sections [J]. Computers & Structures, 1996, 61(5): 897-908.
  • 7汤建宏,聂孟喜,梁应辰.考虑剪切变形效果的薄壁结构三维动力计算[J].水力发电学报,2007,26(1):77-83. 被引量:2
  • 8王晓峰,杨庆山.基于Timoshenko梁理论的薄壁梁弯扭耦合分析[J].工程力学,2008,25(5):12-16. 被引量:11
  • 9Vieira JR L C M, Malite M, Schafer B W. Simplified models for cross-section stress demands on C-section purlins in uplift [J]. Thin-Walled Structures, 2010,48: 33-41.
  • 10胡毓仁.图论在薄壁杆件结构计算中的应用[J].武汉轻工科技,1989,23(6):21-29. 被引量:3

二级参考文献39

  • 1李俊,沈荣瀛,华宏星.非对称Bernoulli-Euler薄壁梁的弯扭耦合振动[J].工程力学,2004,21(4):91-96. 被引量:8
  • 2赵勇,周竞欧,颜德姮.任意多边形薄壁杆断面几何参数计算方法[J].结构工程师,2004,20(4):38-41. 被引量:9
  • 3张贵生.ANSYS在计算薄壁梁截面几何特性中的应用[J].甘肃科技纵横,2004,33(6):122-123. 被引量:3
  • 4金声 李开禧.弹性开口薄壁杆的单元刚度方程分析.建筑结构,2004,:111-117.
  • 5卢开澄.图论及其应用[M].北京:清华大学出版社,1984..
  • 6LANDO MENTRASTI.Curved thin-walled open-closed cross section beams with finite width[J].Int.J.Engng Sci,1995,33(4):497-524.
  • 7G.Alfano,F.Marotti,L.Rosati.Automatic analysis of multicell thin-walled sections [J].Computers and Structures,1996,59(4):641-655.
  • 8三峡工程升船机塔柱结构卷扬、螺母螺杆方案动力计算比较[R].95-9-4-1-2,北京:清华大学水利系,2004.
  • 9曹富新,杨春秋.工程薄壁结构计算[M].北京:中国铁道出版社,1993.
  • 10Gosowski B.Spatial stability of braced thin-walled members of steel structures[J].Journal of Constructional Steel Research,2003,59 (2):839 ~ 865.

共引文献32

同被引文献16

  • 1徐芝纶.弹性力学简明教程[M].2版.北京:高等教育出版社,1983:8-9:119-159.
  • 2Schafer B W. Review: The direct strength method of cold-formed steel member design [J]. Journal of Constructional Steel Research,2008,54(2/3) : 766-278.
  • 3Davies J M, Leach P. First order generalised beam theory[J]. Journal of Constructional Steel Research, 1994,31 (2/3) : 187-220.
  • 4Silvestre N, Camotim D. First-order generalised beam theory for arbitrary orthotropic materials [J]. Thin- Walled Structures, 2002,40 : 755-789.
  • 5Casafont M, Marimon F, Pastor M M. Calculation of pure distortional elastic buckling loads of members subjected to compression via the finite element method [J]. Thin-Wailed Structures,2009,47(6/7) : 701 -729.
  • 6Goncalves R,Dinis P B,Camotim D. GBT formulation to analyse the first-order and buckling behaviour of thin- walled members with arbitrary cross-sections [J]. Thin- Walled Structures, 2009,47 : 583-600.
  • 7Jansson J,Andreassen M J. Distortional eigenmodes and homogeneous solutions for semi-discretized thin-walled beams [J]. Thin-Walled Structures, 2011,49 (6) : 691- 707.
  • 8Cheung Y K,Tham L G. The finite strip method [M]. CRC Press, 1998.
  • 9Adciny S, Schafer B W. A full modal decomposition of thin-walled, single-branched open cross-section members via the constrained finite strip method [J]. Journal of Constructional Steel Research, 2008,64:12- 29.
  • 10Rust W, Schweizerhof K. Finite element limit load analysis of thin-walled structures by ANSYS(implicit), LS-DYNA (explicit) and in combination [J]. Thin Walled Structures, 2003,41 (2/3) : 227-244.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部