期刊文献+

大跨度拱桥弹性动力失稳的简化计算 被引量:2

Simplified Method for Evaluating the Elastic Dynamic Instability of the Long Span Arch Bridge
下载PDF
导出
摘要 基于Liapunov动力稳定性意义,针对拱结构弹性失稳的特点,研究改进了需对结构整个振动时间历程进行特征值抽取的动态特征值法,通过引入静力稳定系数以及结合关键构件的线性时程计算结果,提出简化的计算方法确定拱桥的动力失稳临界荷载,并以一座实际大跨度拱桥为例进行计算验证,结果表明:该简化方法具有概念清晰,计算快速、准确的特点,可以为大跨度拱桥的动力稳定性能研究提供更为有效的研究手段,同时也适用于其他存在稳定问题的土木工程结构。 Based on the sense of Liapunov dynamic stability and the features of elastic buckling of arch bridge, and using the static buckling eigenvalue as well as linear time history analysis result, a simplified method for evaluating the elastic dynamic instability was developed from the so called "dynamic eigenvalue method" that needs to extract the minimum buckling excitation. The presented method was compared and eigenvalues step by step under the whole earthquake validated to be efficient and accurate via a case study, and therefore it could be used as a more effective method to study the dynamic stability issue of long span arch bridges and other civil engineering structures.
作者 徐艳 胡世德
出处 《土木建筑与环境工程》 CSCD 北大核心 2012年第3期89-94,共6页 Journal of Civil,Architectural & Environment Engineering
基金 国家自然科学基金(51008225)
关键词 动力失稳 大跨度拱桥 简化计算 地震 dynamic instability long span arch bridge simplified method earthquake
  • 相关文献

参考文献19

  • 1Feng M R. Cbina's major bridges [C]//IABSE Workshop Shanghai 2009 ' Recent Major Bridges', May 11-20, Tongji University, Shanghai, China, IABSE Conference Reports, 2009, 94 : 1-24.
  • 2Fan L C, Zhang F H, XU Y. A Brief introduction on China code for seismic design of urban bridges [C]// Proceedings of the Second PRC- US Workshop on Seismic Analysis and Design of Special Bridge, Buffalo, New York, December 3-5, 2003, University at Buffalo, MCEER Report, 2004 : 15-22.
  • 3Pela L, Aprile A, Benedett A. Seismic assessment of masonry arch bridges[J]. Engineering Structures, 2009, 31: 1777-1788.
  • 4李国豪.桥梁结构的稳定与振动[M].2版.北京:中国铁道出版社,2002.
  • 5Gupta A, Krawinkler H. Dynamic P-Delta effects for flexible inelastic steel structures [J]. Journal of Structure Engineering,2000, 126(1) :145-154.
  • 6Dionisio B. Instability of buildings subjected to earthquakes [J]. Journal of Structure Engineering, ASCE, 1992,18(8) :2239-2260.
  • 7Nakajima A, Kuranishi S, Abe H. Dynamic failure of structures with structural instability I-J]. Structural Engineering and Earthquake Engineering, JSCE, 1987,4 (2) : 351-360.
  • 8Teter A. Dynamic multimode buckling of thin-walled columns subjected to in-plane pulse loading [J]. International Journal of Non-Linear Mechanics, 2010, 45:207-218.
  • 9Virella J, Godoy L, Su' arez L. Dynamic buckling of anchored steel tanks subjected to horizontal earthquake excitation [J]. Journal of Constructional Steel Research, 2006,62:521-531.
  • 10Lamarche C P, Tremblay R. Seismically induced cyclic buckling of steel columns including residual-stress and straimrate effects [J]. Journal of Constructional Steel Research, 2011,67(9) :1401-1410.

二级参考文献20

  • 1徐艳,胡世德,王志强,王君杰.大跨径钢拱桥的横向非线性地震响应分析[J].同济大学学报(自然科学版),2004,32(7):878-883. 被引量:6
  • 2孙建恒,夏亨熹.网壳结构非线性动力稳定分析[J].空间结构,1994(1):25-31. 被引量:27
  • 3徐艳,胡世德.钢管混凝土模型拱的弹性动力稳定性研究[J].同济大学学报(自然科学版),2005,33(1):6-10. 被引量:5
  • 4Vamvatsikos D,Cornell C A.Incremental dynamic analysis[J].Earthquake Engineering and Structural dynamics,2002,31:491-514
  • 5钢管混凝土拱桥抗震性能研究[R].土木工程防灾国家重点实验室开放课题总结报告.2003
  • 6曾国峰.钢管混凝土系杆拱桥极限承载力研究[D].上海:同济大学,2003
  • 7Bolotin V V.弹性体系的动力稳定性[M].林砚田,译.北京:教育出版社,1960.
  • 8Akkas N.Note on the dynamic buckling loads of shallow spherical shells from static analysis[J].Journal of Structural Mechanics,1981,9(4):483~488.
  • 9Messier R H,Marcal P V.A finite element algorithm for the determination of dynamic buckling.Finite elment analysis of transient nonlinear structural beharior:Proceedings of the Winter Annual Meeting[C].Houston,Tex:Uniled States,1975.133~156.
  • 10Vamvatsikos Dimitrios,Cornell C Allin.Incremental dynamic analysis[J].Earthquake Engineering and Structural Dynamics,2002,31:491.

共引文献62

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部