期刊文献+

木聚糖酶高产菌株EIM-30的鉴定及其产酶条件的优化 被引量:1

Identification of xylanase-producing fungi EIM-30 and its optimization of submerged fermentation conditions
下载PDF
导出
摘要 通过对木聚糖酶高产菌株EIM-30基于形态学和18SrDNA序列的系统发育进化分析,鉴定为里氏木霉Trichoder撇reesei。在单因子实验确定EIM-30产木聚糖酶的最适碳源和氮源的基础上,通过Plackett—Burman实验对影响其产酶的相关因素进行评估并筛选出3个显著效应因子,然后应用最陡爬坡实验和响应面分析确定最适产酶培养基配方为:酵母浸膏1.50%,蛋白胨1.00%,NaC10.50%,PPG-20000.10%,MgS041.20%,CaC20.18%,(NH4)2S040.45%,甘油4.18%,乳糖3.05%,K2唧041.59%。优化后TrichodermareeseiEIM-30的液体发酵产木聚糖酶的活力可达9.857×105V/mL,较优化前提高1.98倍。 A high xylanase-producing strain EIM-30 was identified as Trichoderma reesei based on its molecular phylogenetic analysis of 18S rDNA sequences. The optimum carbon and nitrogen sources for EIM-30 producing xylanase were obtained by the single factor experiments. Then, some factors under submerged fermentation conditions were evaluated and three factors demonstrated prominent effects on producing xylanase were respectively selected by Plackett- Burman design. The suitable medium obtained by steepest ascent design and response surface experiment were as follows: yeast extract 1.50%, peptone 1.00%, NaC1 0.50%, PPG-2000 0.10%, MgSO41.20%, CaCl2 0.18%, (NH4)2 SO4 0.45 %, glycerin 4.18 %, lactose 3.05 % and K2HPO4 1.59 %. After optimization, the xylanase activity of Trichoderma reesei EIM-30 reached as high as 9. 857 × 105 U/mL, which increased 1.98 times than before.
机构地区 福建师范大学
出处 《工业微生物》 CAS CSCD 2012年第3期33-38,共6页 Industrial Microbiology
基金 福建省发改委产业化项目(闽发改投资[2009]958号)
关键词 木聚糖酶 里氏木霉 分子进化系统 液体发酵 Plackett—Burman设计 响应面分析 xylanase Trichoderma reesei phylogenetic analysis submerged fermentation Plackett-Burman design response surface analysis
  • 相关文献

参考文献12

二级参考文献120

共引文献96

同被引文献12

  • 1Ahmed S, Riaz S, Jamil A. Molecular cloning of fungal xylanases: an overview[ J]. Applied Microbiology and Bio- technology, 2009, 84( 1 ) : 19 - 35.
  • 2de Oliveira da Silva LA, Carmona EC. Production and Characterization of Cellulase-Free Xylanase from Trichoder- ma inhamatum[J]. Applied Biochemistry and Biotechnol- ogy, 2008, 150(2) : 117 -125.
  • 3Polizeli M, Rizzatti A, Monti R, et al. Xylanases from fungi: properties and industrial applications [ J ]. Applied Microbiology and Biotechnology, 2005, 67 (5): 577 - 591.
  • 4Fang HY, Chang SM, Hsieh MC, et al. Production, opti- mization growth conditions and properties of the xylanas from AspergiUusc carneus M34 [ J ]. Journal of Molecular Catalysis B : Enzymatic, 2007, 49 : 36 - 42.
  • 5Li XL, Skory CD, Ximenes EA, et al. Expression of an AT-rich xylanase gene from the anaerobic fungus Orpino- myces sp. strain PC-2 in and secretion of the heterologous enzyme by Hypocrea jecorina[ J]. Appl Microbiol Biotechnol, 2007, 74:1 264- 1 275.
  • 6Beg QK, Kapoor M, Mahajan L, et al. Microbial xylanas- es and their industrial applications: a review[ J ]. Applied Microbiology and Biotechnology, 2001, 56 : 326 - 338.
  • 7Subramaniyan S, Prema P. Biotechnology of Microbial Xy- lanases: Enzymology, Molecular Biology, and Application [ J ]. Critical Reviews in Biotechnology, 2002, 22 ( 1 ) : 33 - 64.
  • 8Butt MS, Tahir-Nadeem M, Ahmad Z, et al. Xylanases and their applications in baking industry[ J-. Food Tech- nology and Biotechnology,2008, 46( 1 ) : 22 - 31.
  • 9Miller GL Use of dinitrosalicylic acid reagent for determi- nation of reducing sugar [ J ]. Analytical Chemistry, 1959, 31(3): 426-428.
  • 10刘欣,石鹏君,杨培龙,姚斌.双功能木聚糖酶研究进展[J].中国农业科技导报,2010,12(2):50-56. 被引量:4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部