期刊文献+

Banach空间中的积分算子不动点定理及其应用 被引量:1

Multiple Postive Solutions of Nonlinear Multi-Point Boundary Value Problem in Banach Spaces
原文传递
导出
摘要 利用不动点指数理论得到了若干个积分算子的不动点定理,这些结论可用于研究许多边值问题.利用这些结论研究了Banach空间中二阶两点边值问题正解的存在性,特别的,在有些情况下去掉了Banach空间中的锥必须是正规的这一条件限制,而这一条件限制在许多文献中是必须的. Some fixed point theorems of integral operator are given firstly by using fixed point index theory. These results can be used to solve many problems. In this paper, applying these results, we study the existence of positive solutions for two-point boundary value problems in Banach spaces. Particularly, sometimes, we don't need that the cone in Banach space is normal, which is essential for the technique used in many papers.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第11期166-171,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(11171088) 河北科技大学博士基金(QD201020) 河北省教育厅基金(2008153)
关键词 BANACH空间 积分算子 Kuratowski非紧性测度 严格集压缩映射 边值问题 Banach space integral operator Kuratowski measure of noncompactness strict set contraction boundary value problem
  • 相关文献

参考文献7

  • 1Guo D, Lakshmikantham V, Liu X. Nonlinear Integral Equation in Abstract spaces[M]. Kluwer Academic Publishers, Dordrecht, 1996.
  • 2Demling K. Ordinary Differential Equations in Banach Spaces[M]. Springer, Berlin, 1977.
  • 3Guo D, Lakshmikantham V. Nonlinear Problems in Abstract Cones[M]. Academic Press, San Diego, 1988.
  • 4Lakshmikantham V, Leela S. Nonlinear Differential Equations in Abstract Spaces[M]. Pergamon Press, Oxford, 1981.
  • 5Guo D, Lakshmikantham V. Multiple solutions of two-point boundary value problem of ordinary differential equations in Banaeh spaee[J1. J Math Anal Appl, 1988, 129: 211-222.
  • 6Liu B. Positive solutions of a nonlinear four-point boundary value problems in Banach spaces[J]. J Math Anal Appl, 2005, 305: 253-276.
  • 7Feng M, Ji D, Ge W. Positive solutions for a class of boundary-value problem with integral boundary conditions in Banach spaces[J]. J Comput Appl Math, 2008, 222(2): 351-363.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部