期刊文献+

低碳转型下的技术发展路径选择——基于技术学习、不确定性与碳税的分析 被引量:1

The Technology Development Path Selection under Transition to A Low-carbon Economy——Based on Technological Learning,Uncertainty and Carbon tax
下载PDF
导出
摘要 通过建立一个内生技术变化的优化模型,考察了在不确定的技术学习、确定性的技术学习以及不确定的碳税3种情况下,向低碳经济转型的技术发展路径选择问题。研究表明,通过选择适当的技术发展路径,可以有效减少减排成本和碳排放,实现向低碳经济转型。技术学习是产生这种最优技术发展路径的关键因素,技术学习的不确定性会扩大不同技术发展路径之间的差异,而不确定的碳税则缩小了这些技术发展路径的差异。 This article examines how the uncertain technological learning,deterministic technological learning and uncertain carbon tax affect the technology development path and carbon emissions of the transition to low-carbon economy through an endogenous technological learning optimal model.Results show that the transition to low-carbon economy can be realized by choosing appropriate technology development path to decrease the costs and emissions.Technological learning is a key factor to generate such optimal path and the uncertainty in technological learning can expand the divergence between the technology development path.However,the uncertain carbon narrows the divergence.
出处 《科技进步与对策》 CSSCI 北大核心 2012年第12期1-4,共4页 Science & Technology Progress and Policy
基金 国家自然科学基金项目(70901026) 教育部人文社会科学基金项目(10YJC630032)
关键词 技术发展路径 不确定性 技术学习 碳税 Technology Development Path Uncertainty Technological Learning Carbon Tax
  • 相关文献

参考文献7

  • 1IPCC. Summary for policymakers of IPCC fourth assess- ment reportERS. Working Group II, 2007.
  • 2MICHEI. DEN ELZEN, PAUL LUCAS, I)ETLEF VAN VUUREN. Abatement costs of post-Kyoto climate regimes FJ]. Energy Policy, 2005(33):213 8-315 1.
  • 3胡初枝,黄贤金,钟太洋,谭丹.中国碳排放特征及其动态演进分析[J].中国人口·资源与环境,2008,18(3):38-42. 被引量:306
  • 4陈文颖,高鹏飞,何建坤.二氧化碳减排对中国未来GDP增长的影响[J].清华大学学报(自然科学版),2004,44(6):744-747. 被引量:87
  • 5GRUBLER A, NAK1CENOVIC A. A model of endogenous technological change through uncerlain returns on innova tionEJ. Technological Change and the Environment, 2002, 12(5) :280-319.
  • 6TIEJU MA. Coping with uncertainties in lechnological learning E . Management Science, 2010,56(1):192-201.
  • 7MESSNER S. Endogenized technological learning in an ener gy systems modelEJ]. Journal of Evolutionary Economius, 1997,7(3) =291-313.

二级参考文献23

共引文献390

同被引文献14

  • 1陈家昌,郭家强,闫平,王成.我国车用燃料技术发展路径分析研究[J].汽车技术,2007(7):1-6. 被引量:3
  • 2LAI K K, WU S J. Usingpatent co-citation approach to establish a new patent classification system [ J ]. Inf. Process. Manag. , 2005, 41: 313-330.
  • 3DAIM T U, RUEDA G, MARTIN H, et al. Forecastingemerg- ing technologies: use of bibliometrics and patent analysis [ J]. TechnoL Forecast. Soc. Change, 2006, 73 : 981-1012.
  • 4CHOI C, PARK Y. Monitoring the organic structure of technol- ogy based on the patent development paths [ J]. Technological Forecasting & Social Change, 2009, 76: 754-768.
  • 5LAI K K, CHANG S B. Establishing technology diffusion model of business method : a study integrating patent citation and Bass model [J]. J. Technol. Manag, 2004, 9 (1) : 1-34.
  • 6CHANG Shann-Bin, LAI Kuei-Kuei, CHANG Shu-Min. Ex- ploring technology diffusion and classification of business meth- ods: using the patent citation network [ J ]. Technological Forecasting & Social Change, 2009, 76: 107-117.
  • 7美国特斯拉电动汽车进军中国,电池容量突破技术限制[EB/OL].[2014-06-30].http://news.china.com.en/txt/2014-06/30/content_32812148_3.htm.
  • 8张坚志,朱方伟,蒋兵.消费电子企业技术发展路径的案例研究[J].中国软科学,2008(10):23-30. 被引量:6
  • 9邱洪华,余翔.基于k-means聚类算法的专利地图制作方法研究[J].科研管理,2009,30(2):70-76. 被引量:32
  • 10杨中楷,梁永霞,刘倩楠.专利引用过程中的知识活动探析[J].科研管理,2010,31(2):171-177. 被引量:37

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部