期刊文献+

基于用户日志挖掘的查询扩展方法 被引量:12

A NEW QUERY EXPANSION METHOD BASED ON USER LOGS MINING
下载PDF
导出
摘要 查询扩展可以有效地消除查询歧义,提高信息检索的准确率和召回率。通过挖掘用户日志中查询词和相关文档的连接关系,构造关联查询,并在此基础上提出一种从关联查询中提取查询扩展词的查询扩展方法。同时,还提出一种查询歧义的判别方法,该方法可以对查询词所表达的检索意图的模糊程度进行有效度量,也可以对查询词的检索性能进行预先估计。通过对查询歧义的度量来动态调整扩展词的长度,提高查询扩展模型的灵活性和适应能力。 Query expansion has long been suggested as an effective way to eliminate query ambiguity and improve the precision and recall rates of information retrieval.By mining relations among phrases and relative documents in user logs,the paper constructs related queries,based on which proposes a query expansion method to extract query expansion words from related queries.Meanwhile the paper introduces a method to measure the ambiguity of user queries,which can calculate the fuzzy degree of uses’ search intentions and can estimate the performance of search sessions in advance.The query ambiguity measurement helps dynamically adjusting the number of expanded terms,so that the flexibility and adaptability of query expansion model is improved.
作者 朱鲲鹏 魏芳
出处 《计算机应用与软件》 CSCD 北大核心 2012年第6期113-117,共5页 Computer Applications and Software
基金 上海市博士后项目(10R21421900)
关键词 查询扩展 日志挖掘 信息检索 Query expansion Log mining Information retrieval
  • 相关文献

参考文献9

  • 1Wen J R, Nie J Y, Zharrg H J. Clustering user queries of a search en- gine [ C ]//Proceedings of the lOth International World Wide Web Con-ference, New York, ACM Press ,2001 : 162 - 168.
  • 2Liu S, Liu F, Yu C, et al. An effective approach to document retrieval via utilizing WordNet and recognizing phrases [ C ]//Proceedings of the 27th annual international Conference on Research and development in Information Retrieval ,2004:266 - 272.
  • 3崔航,文继荣,李敏强.基于用户日志的查询扩展统计模型[J].软件学报,2003,14(9):1593-1599. 被引量:61
  • 4Wen J R, Nie J Y, Zhang H J. Query clustering using user logs [ J ]. ACM Transactions on Information Systems,2002,20( 1 ) :59- 81.
  • 5Zhang Z, Nasraoui O. Mining search engine query logs for query recom- mendation[ C]//Pmceedings of the. 15th international World Wide Web conference ,2006 : 1039 - 1040.
  • 6Billerbeck B, Scholer F,Williams H E, et al. Query expansion using as- sociated queries[ C ]//Proceedings of the 12th international conference on Information and knowledge management ,2003:2- 9.
  • 7Cover T, Thomas J. Elements of Information Theory [ M ]. New York: John Wiley and Sons,1991.
  • 8搜狗日志库[OL].http://www.sogou.com/labs/.
  • 9Xu J X, Croft W B. Query expansion using local and global document a- nalysis[ C ]//Proceedings of the 19th Annual International SIGIR Con- ference on Research and Development in Information Retrieval. New York : ACM Press, 1996:4 - 11.

二级参考文献10

  • 1Furnas GW, Landauer TK, Gomez LM, Dumais ST. The vocabulary problem in human-system communication. Communication of ACM, 1987,30(11):964~971.
  • 2Wen JR, Nie JY, Zhang HJ. Clustering user queries of a search engine. In: Proceedings of the 10th International World Wide Web Conference (WWW10). New York: ACM Press, 2001. 162~168.
  • 3Xu JX, Croft WB. Query expansion using local and global document analysis. In: Frei HP, Harman D, Schauble P, Wilkinson R,eds. Proceedings of the 19th Annual International SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 1996. 4~11.
  • 4Xu JX, Croft WB. Improving the effectiveness of information retrieval with local context analysis. ACM Transactions on Information Systems, 2000,18(1):79~112.
  • 5Deerwester S, Dumai ST, Furnas GW, Landauer TK, Harshman R. Indexing by latent semantic analysis. Journal of ACM Transactions on Information Systems, 2000,18(1):79~112.
  • 6Qiu Y, Frei H. Concept based query expansion. In: Korfhage R, Rasmussen EM, Willett P, eds. Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 1993.160~169.
  • 7Attar R, Fraenkel AS. Local feedback in full-text retrieval systems. Journal of the ACM, 1977,24(3):397~417.
  • 8Buckley C, Salton G, Allan J, Singhal A. Automatic query expansion using SMART. Technical Report, TREC-3, 1995. 69~80.
  • 9Ricardo B-Y, Berthier R-N. Modem Information Retrieval. England: Pearson Education Limited, 1999.
  • 10Hull D. Using statistical testing in the evaluation of retrieval experiments. In: Korfhage R, Rasmussen EM, Willett P, eds.Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York: ACM Press, 1993. 329~338.

共引文献60

同被引文献97

引证文献12

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部