期刊文献+

一种基于MapReduce并行框架的大规模矩阵乘法运算的实现 被引量:7

IMPLEMENTATION FOR LARGE SCALE MATRIX MULTIPLICATION ON MAPREDUCE PARALLEL FRAMEWORK
下载PDF
导出
摘要 在机器学习算法中,矩阵乘法运算是一种基本运算。而扩大矩阵乘法的运算规模并降低其运算时间,将有利于满足机器学习算法处理大规模数据的要求。将MapReduce并行框架用于分块矩阵乘法,实现一种用于大规模矩阵乘法运算的方法。理论分析和实验结果表明该方法在处理大规模矩阵乘法上具有极大的潜能,并且随着计算节点的增加从而获得较好的加速比。 Among machine learning algorithms,matrix multiplication is a fundamental operation.It will help satisfy machine learning algorithm’s requirement to handle a large amount of data to expand the matrix multiplication size and reduce its computation time.The article applies MapReduce parallel framework to block matrix multiplication to implement a large-scale matrix multiplication method.Both theoretical analysis and experimental results illustrate that the approach reveals great potentialities on large-scale matrix multiplication.As the number of nodes increases,it gains even better speedup ratio.
作者 张骏
出处 《计算机应用与软件》 CSCD 北大核心 2012年第6期267-270,共4页 Computer Applications and Software
关键词 矩阵乘法 MAPREDUCE HADOOP Matrix multiplication MapReduce Hadoop
  • 相关文献

参考文献8

  • 1Dean J, Ghemawat G. Mapreduce: simplified data processing on large clusters[ J]. Communications of the ACM ,2008 : 107 - 113.
  • 2White T. Hadoop :The Definitive Guide[ M ]. 2nd ed. O' Reilly Media, 2010.
  • 3Zhao Weizhong, Ma Huifang, He Qing. Parallel k-means clustering based on mapreduce[ C]//Proceedings of the 1st International Conference on Cloud Computing, CloudCom ' 09, Berlin : Springer-Verlag, 2009 : 674 - 679.
  • 4Stupar A, Michel S, Schenkel R. Rankreduce-processing k-nearest neigh- bors queries on top of mapreduce [ C ]//Proceedings of the 8th Workshop on Large-Scale Distributed Systems for Information Retrieval (LSDS- IR' 10) ,2010.
  • 5Catanzaro B ,Sundaram N ,Keutzer K. Fast support vector machine train- ing and classification on graphics processors [ C ]//Proceedings of the 25th international conference on Machine learning, ICML' 08, New York, NY, USA ,2008.
  • 6Das A S, Datar M, Garg A, et al. Google news personalization:scalable online collaborative filtering[ C ]//Proceedings of the 16th internation- al conference on World Wide Web, WWW' 07, New York, NY, USA, 2007 : 271 - 280.
  • 7Liu Chao, Yang Hungchih, Fan Jinliang, et al. Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce [ C ]/Proceedings of the 19th international conference on World wide web, WWW' 10, New York, NY, USA,2010:681 - 690.
  • 8http ://www. acrc. bris. ac. uk.

同被引文献41

  • 1金锋,吴澄.大规模生产调度问题的研究现状与展望[J].计算机集成制造系统,2006,12(2):161-168. 被引量:34
  • 2CANNON L E.A cellular computer implement the Kalman filter algorithm[D].Bozeman:Montana State University engineering researchlabs,1969.
  • 3FOX G C,OTTO S W,HEY A J G.Matrix algorithm on a hypercube Ⅰ:matrix multiplication[J].Parallel computing,1987,4(1):17-31.
  • 4DEKEL E,NASSIMI D,SAHNI S.Parallel matrix and graph algorithms[J].SIAM J on Comput,1981,10(4):657-675.
  • 5HUANG B,WU Y.Matrix multiplication in MapReduce[EB/OL].[2013-02-19].https://www.s.duke.edu/courses/cps216/current/Project/Project/projects/Matrix_ Multiply/proj _report.pdf.
  • 6NORSTAD J.A MapReduce algorithm for matrix multiplication[EB/OL].[2013-02-19].http://www.norstad.org/matrix-multiply/index.html.
  • 7SEO S,YOON E J,KIM J,et al.HAMA:an efficient matrix computation with the MapReduce framework[C]// IEEE.proceedings of the 2010 IEEE Second International Conference on Cloud Computing Technology and Science (CLOUDCOM'10).Washington:IEEE Computer Society,2010:721-726.
  • 8MYUNG J,LEE S G.Matrix chain multiplication via multi-way join algorithms in MapReduce[C]//ACM.proceedings of the 6th International Conference on Ubiquitous Information and Communication (ICUIMC'12).Malaysia New York:ACM,2012:53-53.
  • 9RAJARAMAN A,ULLMAN J D.Mining of massive datasets[M].Cambridge:Cambridge University Press,2011.
  • 10SUN Z G,LI T,RISHE N.Large-scale matrix factorization using MapReduce[C]// IEEE.proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW 2010).Washington:IEEE Computer Society,2010:1242-1248.

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部