期刊文献+

可能性决策图

Possibilistic decision diagrams
下载PDF
导出
摘要 基于可能性理论和二元决策图提出一种新的决策图———可能性决策图.用于对不确定环境下的不精确和模糊的信息进行编码,并严格证明了所提出的可能性决策图能规范地表示可能性命题公式.最后定义了可能性决策图上的三种运算. In this paper, we introduced possibilistic decision diagrams as a new decision diagrams to encode imprecise and vague information under uncertain environment on basis of possibility theory and binary decision diagrams. We prove that our possibilistic decision diagrams can give a canonical representation of possibilistic propositional formula. And we define the operations that can be applied on possibilistic decision diagrams=taking max,taking min and taking reverse.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期36-40,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(60803102 60473042 61070084 60573067)
关键词 二元决策图 可能性理论 可能性决策图 binary decision diagrams possibilistic theory possibilistic decision diagrams
  • 相关文献

参考文献12

  • 1BRYANT R E. Graph-based algorithms for Boolean function manipulation[J]. IEEE Transactions on Computers, 1986,35 (8) : 79-85.
  • 2BRYANT R E. Symbolic Boolean manipulation with ordered binary decision diagrams[J]. ACM Computing Surveys, 1992,24 (3) :293-318.
  • 3DRECHSI.ER R,SIELING D. Binary decision diagrams in theory and practice[J]. International Journal on Software Tools for Technology Transfer,2001(3), 112-136.
  • 4BRACE K S, RUDELL R, BRYANT R. Efficient implementation of a BDD package[C]//DAC-27; ACM/IEEE Design Automation Conference, Orlando, FL: 1990 : 40-45.
  • 5DRECHSLER R,SIELING D. Binary decision diagrams in theory and practice[J]. International Journal on Software Tools for Technology Transfer,2001(3) :112-136.
  • 6CIMATTI A, PISTORE M, ROVERI M, et al. Weak, strong, and strong cyclic planning via symbolic model checking[J]. Artificial Intelligence, 2003,147(1/2) : 35-84.
  • 7CIMATTI A ROVERI M. Conformant planning via model checking[J]. Lecture Notes in Computer Science, 2000,1809(5) :21-34.
  • 8GIUNCHIGLIA F, TRAVERSO P. Planning as model checking[J]. Lecture Notes in Computer Science, 2000,1809 (6) :10-12.
  • 9EDELKAMP S,HELMERT M. MIPS.-the model-checking integrated planning system[J]. AI Magazine,2001,22(3) :67 71.
  • 10DUBOIS D, LANG J, PRADE H. Possibilistic logic[C]//GABBAY D M, HOGGER C J, ROBINSON J A, et al. Handbook of Logic in Artificial Intelligence and Logic Programming, Oxford : Oxford Univ Press, 1994,3 : 439-513.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部