期刊文献+

基于滤波的SAR影像去噪方法分析 被引量:2

The Analysis of Noise Reduction for SAR Image Based on Filters
下载PDF
导出
摘要 根据SAR(Synthetic Aperture Radar)影像相干噪声的特点,对现在广泛应用的各种抑制噪声的滤波方法如均值滤波、Frost滤波、增强型Lee滤波、Lee滤波、中值滤波等进行分析,并提出适合本研究区影像的基于小波变换的分量滤波处理去噪方法,利用均值、标准差、平滑指数、PM值、信息熵和平均梯度等评价指标对各种滤波去噪后的影像质量进行评价,并对去噪效果进行对比分析,证明本文所采用的滤波方法对SAR影像噪声有很好的抑制作用,并且较好的保存了图像纹理信息。 According to the characteristics of coherent noise in SAR (Synthetic Aperture Radar) images, we analysis variety of noise suppression filters those are widely used now, such as mean filter, Frost filter, Lee filter, enhanced Lee filter, Gamma Map filter and proposed subpart filter based on wavelet denosing method which is best in using in the study areas. Then, the mean values, standard deviation, smoothness index, PM values, standard deviation, the average gradient of entropy are used in evaluation of denoised images quality. The comparative analysis results show that the wavelet method used in this paper has a better inhibitory effect and preservation of image texture information.
出处 《微计算机信息》 2012年第6期24-26,共3页 Control & Automation
关键词 SAR影像 相干噪声 抑噪滤波 基于小波变换的分量滤波方法 质量评价 SAR images coherent noise noise suppression filter subpart tater method based on wavelet quality evaluation.
  • 相关文献

参考文献7

二级参考文献12

  • 1黄岩.高分辨率星载合成孔径雷达成像处理技术研究[M].北京:北京航空航天大学电子工程系,1999..
  • 2Lee J.S..Speckle Analysis and Smoothing of Synthetic Radar Images [J].Computer Graphics and Image Processing,1981,(17):24- 32.
  • 3Chris O., Shaun Q. Understanding Synthetic Aperture Radar Images [M], Artech House, Boston* London, 1998.
  • 4Lee J. S. and Jurkevic.h.. Speckle Filtering of Synthetic Aperture Radar Images: A Review [J]. Remote Sensing Reviews, 1994, (8): 313-340.
  • 5舒宁,微波遥感原理,1997年
  • 6潘习哲,星载SAR图像处理,1996年,83页
  • 7黄岩,学位论文,1999年
  • 8郑玉燕,何建农.基于数学形态学的SAR图像道路提取[J].微计算机信息,2008,24(24):293-294. 被引量:10
  • 9徐新,廖明生,朱攀,卜方玲.单视数SAR图像Speckle滤波方法的研究[J].武汉测绘科技大学学报,1999,24(4):312-316. 被引量:17
  • 10李春升,燕英,陈杰,黄岩,周荫清.高分辨率星载SAR单视图像斑点噪声抑制实现方法[J].电子学报,2000,28(3):13-16. 被引量:16

共引文献19

同被引文献31

  • 1HACHICHA S, CHAABANE F. On the SAR Change Detection Review and Optimal Decision[J]. International Journal of Remote Sensing, 2014, 85(5): 1693-1714.
  • 2MARINO A, HAJNSEK I. A Change Detector Based on an Optimization with Polarimetric SAR Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8) : 4781-4798.
  • 3AGHABABAEE H, AMINI J, TZENG Y C, Improving Change Detection Methods of SAR Images Using Fractals [J]. Scientia Iranica, 2013, 20(1): 15 22.
  • 4AGHABABAEE H, AMINI J, TZENG Y C, et al. Unsupervised Change Detection on SAR Images Using a New Fractal-based Measure[J].Photogrammetrie-Fernerkundun- Geoinformation, 2013(3): 209 220.
  • 5XIONG Boli, CHEN J M, KUANG Gangyao. A Change Detection Measure Based on a Likelihood Ratio and Statistical Properties of SAR Intensity Images[J]. Remote Sensing Letters, 2012, 3(3): 267-275.
  • 6AGHABABAEE H, TZENG Y C, AMINI J. Swarm Intelli- gence and Fractals in Dual-pol Synthetic Aperture Radar Image Change Detection[J].Journal of Applied Remote Sensing, 2012, 6(1): 63596-63596.
  • 7MOSER G,SERPICO S B.Unsupervised Change Detection from Muhichannel SAR Data hy Markovian Data Fusion [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2114-2128.
  • 8WANG Guangxue, HUANG Xiaotao, ZHOU Zhimin, et al. A New SAR Image Change Detection Algorithm Based on Texture Feature[C]//Proceedings of the 3rd International Asia-Pacific Conference on Synthetic Aperture Radar. Seoul, Korea: IEEE, 2011.
  • 9GONG Maoguo, LI Yu, JIAO Licheng, et aI. SAR Change Detection Based on Intensity and Texture Changes[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93:123-135.
  • 10BAZI Y, BRUZZONE L, MELGANI F. An Unsupervised Approach Based on the Generalized Gaussian Model to Automatic Change Detection in Multitemporal SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 874-887.

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部