期刊文献+

基于MSET的电站锅炉空气预热器状态预测系统 被引量:6

The state prediction system of power station boiler air preheater based on MSET
下载PDF
导出
摘要 详细阐述了一种基于多变量状态估计(Multivariate State Estimation Techniques,MSET)的电站锅炉空气预热器状态预测的方法。在该方法中,首先建立正常工况下各监测参数之间的关联模型;然后根据系统当前观测特征向量与各建模样本特征向量之间的相似性程度,使用MSET对当前观测向量进行估计,得到与观测向量相对应的估计残差。最终模拟计算结果表明,MSET可有效并精确的对空气预热器的运行状态进行预测,实现对空气预热器劣化趋势进行早期预测,具有很高的实用价值。 A novel approach for air preheater state prediction of power station boiler is expounded detailedly based on multivariate state estimation techniques (MSET). In the approach, correlation model among monitoring parameters in normal work condition is constructed firstly. Then, according to the similarities between the current observed feature vector and each history feature vector contained in process memory matrix , estimation of the current feature vector is calculated by using MSET Results demonstrated that MSET can effectively and accurately predict the operation state of air preheater, and realize forecast the degradation trend of air preheater, this approach has high Practical value
作者 贺涛 郭群龙
出处 《中国科技信息》 2012年第12期161-162,共2页 China Science and Technology Information
关键词 MSET 空气预热器 状态预测 电站锅炉 劣化趋势 MSET air preheater state prediction powerstation boiler degradstion trend
  • 相关文献

参考文献5

  • 1Gross KC, Singer RM, and Wegerieh SW, etal. Application of a model based fault detection system to nuclear plant, signals [A]. t SAP [C]. Seoul, Korean, 1997: 66-70.
  • 2Stephan W Wegerich. Similarity based modeling of time synchronous averaged vibration signals for machinery health monitoring [A].2004 IEEE Aerospace Conference Proceeding s[C].2004: 3654-3662.
  • 3郭鹏,David Infield,杨锡运.风电机组齿轮箱温度趋势状态监测及分析方法[J].中国电机工程学报,2011,31(32):129-136. 被引量:123
  • 4姚良,李艾华,孙红辉,张振仁.基于MSET和SPRT的内燃机气阀机构振动监测[J].振动工程学报,2009,22(2):150-155. 被引量:8
  • 5北京中瑞泰科技有限公司.iEM设备状态智能预警系统白皮书北京:北京中瑞泰科技有限公司,2007.

二级参考文献31

  • 1Gross K C, Singer R M, Wegerich S W, et al. Application of a model-based fault detection system to nuelear plant signals [A]. ISAP[C]. Seoul, Korean, 1997: 66-70.
  • 2Stephan W Wegerich. Similarity based modeling of time synchronous averaged vibration signals for machinery health monitoring [A ]. 2004 IEEE Aerospace Conference Proceedings [C]. 2004 : 3 654- 3 662.
  • 3Herzog J P, Wegerich S W, Gross K C. MSET modeling of crystal river-3 venturi flow meters [A]. ASMA/JSME/SFEN 6th International Conference of Nuclear Engineering (ICONE6)[C]. San Diego, CA, May, 1998.
  • 4Christopher L Black, Robert E Uhrig, Hines J Wesldy. System modeling and instrument calibration verification with a nonlinear state estimation technique [A]. Proceedings of the Maintenance and Reliability Conference[C]. Knoxville, TN, May, 1998.
  • 5Chenggang Yu, Bingjing Su. A non-parametric sequential rank-sum probability ratio test method for binary hypothesis testing[J]. Signal Processing, 2004, (84):1 267-1 272.
  • 6Schoonewelle H,Hagen T H J J van der, Hoogenboom J E. Theoretical and numerical investigations into the SPRT method for anomaly detection [J]. Ann. Nuclear Energy,1995, 22(11) : 731-742.
  • 7Hollander M, Wolfe D A. Nonparametric Statistical Methods [M]. New York, Wiley, 1999.
  • 8Crabtree C J, Feng Y, Tavner P J. Detecting incipient wind turbine gearbox failure., a signal analysis method for on-line condition monitoring[C]//Proceeding of European Wind Energy Conference, Poland, 2010.
  • 9Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1-39.
  • 10Amirat Y, Benbouzid M, A1-Ahmar E. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2629-2636.

共引文献124

同被引文献24

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部