期刊文献+

格子-Boltzmann方法模拟多孔介质内自然对流蓄热过程 被引量:1

Numerical Simulation of Heat Storage Process for Natural Convection in Porous Media with Lattice-Boltzmann Method
下载PDF
导出
摘要 以在高温热量存储、太阳能利用和建筑节能中有着广泛应用的多孔蓄热装置为研究对象,基于格子-Boltzmann方法(LBM)的基本原理,建立表征体元尺度(REV)上多孔介质自然对流的热流耦合方程,对多孔介质区域内的定温加热过程进行数值计算,探索了蓄热装置工作效果与多孔介质材料和内部流体特性的关系。分析获得了多孔介质渗透率和工质热膨胀率增大对多孔介质蓄热的强化作用,以及强自然对流作用下温度场分布所出现的不均匀特性。 In this paper, heat storage devices with porous media were investigated. These devices were applied in many areas,such as high-temperature heat storage,solar energy and HVAC. Based on the basic principles of Lat- tice - Bohzmann Method,the equations of heat natural convection in porous media was established on REV scale. The process of constant temperatm'e heating in porous media was calculated by LBM. The results of simulation showed that the effect of heat transfer was strengthened by permeability and thermal expansion porous media, uneven distribution of temperature field was appeared in strong natural convection.
作者 万斌 罗成龙
出处 《南昌大学学报(工科版)》 CAS 2012年第2期165-167,171,共4页 Journal of Nanchang University(Engineering & Technology)
基金 江西省科技支撑计划项目(2011BBE50031) 江西省科学院引进博士项目(2011-YYB-02) 江西省科学院国家级预研项目(2011-YGY-01)
关键词 多孔介质 表征体元尺度 格子-Boltzmann 自然对流 porous media REV Lattice - Boltzmann natural convection
  • 相关文献

参考文献8

二级参考文献55

共引文献17

同被引文献65

  • 1XUYou-Sheng,ZHONGYi-Jun,HUANGGuo-Xiang.Lattice Boltzmann Method for Diffusion-Reaction-Transport Processes in Heterogeneous Porous Media[J].Chinese Physics Letters,2004,21(7):1298-1301. 被引量:5
  • 2蔡睿贤,苟晨华,张娜.多孔介质中考虑各向异性自然对流Brinkman模型的解析解(Ⅱ)[J].中国科学(G辑),2005,35(2):113-120. 被引量:4
  • 3SUCCI S, BENZI R, MASSAIOLI E A review of the lattice Boltzmann method [J]. International Journal of Modem Physics C, 1993, 4 (2): 409-415.
  • 4CHEN S Y, DOOLEN G D. Lattice Boltzmann method for fluid flows [J]. Annual Review of Fluid Mechanics, 1998, 30( 1 ): 329-364.
  • 5SUKOP M C, THORNE D T. Lattice Boltzmann modeling: an introduction for geoscientists and engineers [M]. Springer, 2006.
  • 6GAO Y, SHARMA M. A LGA model for fluid flow in heterogeneous porous media [J]. Transport in Porous Media, 1994, 17 ( 1 ): 1-17.
  • 7DARDIS O, MCCLOSKEY J. Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media [J] Physical Review E, 1998, 57 (4): 4834-4837.
  • 8THORNE D T, SUKOP M C. Lattice Boltzmann model for the Elder problem [J]. Developments in Water Science, 2004, 55: 1549-1557.
  • 9WALSH S D, BURWINKLE H, SAAR M O. A new partial-bouncebaek lattice-Boltzmann method for fluid flow through heterogeneous media [J]. Computers & Geosciences, 2009, 35 (6): 1186-1193.
  • 10YEHYA A, NAJI H, SUKOP M. Simulating flows in multi-layered and spatially-variable permeability media via a new Gray Lattice Boltzmann model [J]. Computers and Geotechnies, 2015, 70 : 150-158.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部