摘要
为了实现对涡旋盘轮廓高精度测量评价,根据检测特点,从线轮廓度的定义出发,分析并提出了一种计算涡旋线轮廓度误差的新方法──极半径误差法。通过提取被测轮廓的实际测量离散点,根据涡旋线形成原理绘图分析,计算出一系列与实际测量点对应的理论轮廓点的极半径;计算各对应点的极半径误差并将其2倍值作为最小包容被测轮廓的两轮廓线的最小距离,即为涡旋线轮廓度误差。实验计算15 000条数据用时0.2 s,求得平均极半径误差为0.005 6 mm,远小于精度要求0.01 mm。运用极半径误差表达最小包容距离,方法简单可行,有效提高了涡旋线轮廓度误差的计算精度和效率,适用于涡旋盘的高精度测量评价。
In order to realize the vortex of the evaluation of the precision measuring plate profile, this paper put forward a new method of calculation vortex line profile error according to its detection feature and based on the defi- nition. First of all, getting the actual measuring discrete points of measured contour; Then, computing the extremely radius of a series of practical and theoretical outline of the corresponding points ; Finally, calculating corresponding points of the radius error, and madding the second times value as the minimum distance of contain measured out- line, itg vortex line profile error. Calculating 15 000 records used 0.2 s, got the average error of 0.0056 ram, and the precision requirement is far less than 0. O1 mm. Using a radius error expression minimum contain distance, the method is simple ,feasible, and effectively improve the vortex line profile error calculation, and it's applicable to the vortex dish measurement and evaluation.
出处
《南昌大学学报(工科版)》
CAS
2012年第2期179-182,共4页
Journal of Nanchang University(Engineering & Technology)
关键词
线轮廓度误差
极半径误差法
离散点
极半径
极半径误差
最小距离
line profile error
method of polar radius error
discrete points
polar radius
polar radius error
minimum distance