期刊文献+

非奇次空间动态极值估计的模型与应用

The Model and Application of the Inhomogeneous Time Dynamic Extreme Value Theory
下载PDF
导出
摘要 传统EVT方法是从静态的角度,研究超额数据的性质。然而,它没有同时考虑极端数据发生的时间所隐含的充分信息。本文首次在国内提出了非奇次空间动态极值理论(ITD-EVT)的概念,克服了EVT的上述缺陷,在极端数据的基础上考虑了时间因素,并引入多个解释变量,使极值分布的是三个参数为时变的,用二维泊松分布过程建立动态空间模型,是文中一大特色。把TD-EVT运用于极端情况下风险值的估计中,对金融风险管理、资产定价等问题有较大的理论和现实意义。 The number of financial crisis has been growing since the 1990s. A country's financial crisis can eventually lead to international financial crisis in the global economy. The abnormal fluctuations of asset prices are becoming an important financial risk management topic. Extreme Value Theory method (EVT) is the most suitable method used to calculate the tail risk of financial assets in the extreme and unusual circumstances. As can be seen from the domestic and international research on EVT used in risk assessment, most literature studies the nature of obtaining exceedances over the threshold from the whole sample.
作者 胡斌 邹辉文
出处 《管理工程学报》 CSSCI 北大核心 2012年第2期184-190,共7页 Journal of Industrial Engineering and Engineering Management
基金 教育部人文社会科学规划基金资助项目(07JA790096)
关键词 非奇次空间动态极值理论(ITD-EVT) 二维泊松过程 参数估计 VAR inhomogeneous time dynamic extreme value theory (ITD-EVT) two-dimensional Poisson process parametric estimation Value at Risk (VaR)
  • 相关文献

参考文献19

  • 1Hall P. On some simple estimates of an exponent of regular variation [ J]. Journal of the Royal Statistical Society, Series B, 1982, 44 (1) : 37 -42.
  • 2QI YONGCHENG ,(Department of Probability & Statistics, Peking University, Beijing 100871, China.).ESTIMATING EXTREME-VALUE INDEX FROM RECORDS[J].Chinese Annals of Mathematics,Series B,1998,19(4):499-510. 被引量:1
  • 3Dekkers ALM, Haan de L. On the estimation of the extreme- value index and large quantile estimation [J].Annals of Statistics, 1989, 17 (4): 1795 - 1832.
  • 4Danielsson J, Vries de CG. Tail index and quantile estimation with very high frequency data [ J]. Journal of Empirical Finance, 1997, 4 (2-3): 241 -257.
  • 5Resnick S, Starica C. Smoothing the moment estimator of the extreme value parameter [ J]. Extremes, 1999, 1 (3) : 263 - 293,.
  • 6Davison AC, Smith RL. Models for exceedances over high thresholds (with discussion) [ J]. Journal of the Royal Statistical Society. Series B. 1990. 52 (3) : 393 -442.
  • 7Smith RL, Shively TS. A point process approach to modelingtrends in tropospheric ozone [ J]. Atmospheric Environment, 1995, 29 (23) : 3489 -3499.
  • 8Hall P. Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems [ J ]. Multivariate Ann, 1990, 32 (2): 177 -203.
  • 9Longin FM. The asymptotic distribution of extreme stock market returns [J]. Journal of Business, 1996, 69 (3) : 383 -408.
  • 10Duffle D, Pan J. An overview of value at risk [J]. The Journal of Derivatives, 1997, 4 (3) : 7 -49.

二级参考文献23

  • 1[1]Danielsson J,de Haan L,Peng L,et al.Using a bootstrap method to choose the sample fraction in tail index estimation[J].Multivariate Anal,2001,76(2):226-248.
  • 2[2]Gencay R,Selcuk F,Ulugulyaci.A high volatility,thick tails and extreme value theory in value-at-risk estimation[J].Insurance:Mathematics and Economics,2003,33(2):337-356.
  • 3[3]Mcneil A J.Estimating the tails of severity distributions using extreme value theory[J].Astin Bulletin,1997,27(1):117-137.
  • 4[4] McNeil A J.Extreme value theory for risk managers[M].Internal Modeling and CAD Ⅱ Published by RISK Books,1999:93-113.
  • 5[5] McNeil A J,Frey R.Estimation of tail-related risk measures for heteroscedastie financial time series:an extreme value approach[J].Journal of Empirical Finance,2000,7(3):271-300.
  • 6[9] Turan G Balia,David Weinbaumb.A conditional extreme value volatility estimator based on high-frequency returns[J].Journal of Economic Dynamics Control,2007,31(2):361-397.
  • 7[10] Kupiec P.Techniques for verifying the accuracy of risk measurement models[J].Journal of Derivatives,1995,3(2):173-184.
  • 8[11] Engle R,Manganelli S.CAViaR:conditional autoregressive Value at Risk by regression quantiles[J].Journal of Business and Economic Statistics,2004,22(10):367-381.
  • 9Shi Daoji,Appl Math B,1995年,10卷,61页
  • 10Alexander J. M. Rudiger F. Estimation of tail- related risk measures for heteroscedastic financial time series: an extreme value approach[J]. Journal of Empirical Finance, 2000,7 : 271 - 300.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部