期刊文献+

SELDI技术在乳腺癌淋巴结转移诊断中的应用研究

The applied research of SELDI proteomic patterns in diagnosis of breast cancer lymph node metastases
原文传递
导出
摘要 目的应用表面增强激光解析/电离飞行时间质谱(SELDI-TOF-MS)技术和蛋白芯片从乳腺癌患者血清中筛选出乳腺癌淋巴结转移的特异性蛋白标志物,为预测淋巴结转移提供更早且简单易行的方法。方法用SELDI-TOF-MS技术及IMAC-30蛋白芯片检测了39例发生淋巴结转移和45例未发生转移的乳腺癌患者的血清蛋白指纹图谱,采用Ciphergen Biomaker Wizard软件筛选差异表达蛋白,用SPSS17.0软件对数据进行统计分析。结果乳腺癌发生淋巴结转移组与未转移组相比共有31个差异蛋白峰(P<0.05),判别分析选出质荷比为4781、5329、5895、6012和8918的5个差异蛋白并评价其诊断效能,其中质荷比为4781的蛋白的诊断效能最高,灵敏度为84.62%,特异度为88.89%。结论 SELDI蛋白质谱技术在预测乳腺癌患者的淋巴结转移诊断方面具有一定的价值。 Objective To detect the serum tumor biomarkers in breast cancer patients by using SELDI- TOF-MS protein chip array technology,to establish the more early and simple diagnostic models in the prediction of lymph node metastasis of breast cancer. Methods SELDI-TOF-MS technique and IMAC-30 protein chip were used to detect the serum proteomic patterns of 39 patients with lymph node metastases and 45 patients without lymph node metastases. Protein peak clustering and classification analyses were performed utilizing the Biomarker Wizard and Biomarker Pattern software packages:The diagnostic models were developed and validated by discriminant analysis. Results The data of breast cancer patients with or without lymph node metastases were compared and 31 discrepant protein peaks were found( P 〈 O. 05). Based on the discriminant analysis, five protein peaks (M/Z 4781,5329,5895, 6012 and 8918)were selected and evaluated their diagnostic efficiency. The protein peaks of m/z 4781Da had the highest diagnostic value with a sensitivity of 84. 62% and specificity of 88.89%. Conclusions SELDI-TOF-MS can facilitate the prediction of lymph node metastasis.
出处 《中华临床医师杂志(电子版)》 CAS 2012年第12期19-22,共4页 Chinese Journal of Clinicians(Electronic Edition)
基金 山西省卫生厅项目(200712) 国家"863"项目(2006AA02090406)
关键词 乳腺肿瘤 蛋白质组学 SELDI-TOF-MS Breast neoplasms Proteomics SELDI-TOF-MS
  • 相关文献

参考文献3

二级参考文献23

  • 1彭宁宁,王芝瑛,高根娣.上海市学生营养状况分析[J].上海预防医学,1999,11(9):389-391. 被引量:23
  • 2吴其乐,蒋家,施爱珍.上海地区三次居民营养调查比较[J].上海预防医学,1995,7(C00):2-5. 被引量:8
  • 3Wiesner A. Detection of tumor markers with proteinchip technology. Curr Pharm Biotechnol, 2004,5:45-67.
  • 4Qu Y, Adam BL, Yasui Y, et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem, 2002,48:1835-1843.
  • 5Wright GL. SELDI proteinchip MS: a platform for biomarker discovery and cancer diagnosis. Expert Rev Mol Diagn, 2002,2:549-563.
  • 6DeAngelis LM. Brain tumors. N Engl J Med, 2001,344:114-123.
  • 7Samoylova TI, Morrison NE, Cox NR. Molecular markers of glial tumors: current targeting strategies. Curr Med Chem, 2003,10:831-843.
  • 8Erick K, James H, Schwarts TM, et al. Principles of Neural Science. 4th edition.Chicago: The Chicago University of Press, 2001. 1288-1301.
  • 9Silverstein MJ, Skinner KA, Lomis TJ. Predicting axillary nodal positivity in 2282 patients with breast carcinomaS. WorldJ Surg, 2001, 25(6): 767-772.
  • 10Fisher ER, Anderson S, Tan--Chiu E, et al. Fifteen-year prognostic discriminants for invasive breast carcinoma: National Surgical Adjuvant Breast and Bowel Project Protocol-06[J]. Cancer, 2001, 91 (8 Suppl): 1679-1687.

共引文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部