期刊文献+

具有边缘缺陷石墨烯纳米结的自旋输运特性(英文) 被引量:1

The spin-dependent transport properties of a zigzag graphene nanoribbon edge-defect junction
下载PDF
导出
摘要 利用第一性原理研究了两种具有边缘缺陷石墨烯纳米结的自旋输运,即边界氢原子饱和和未被饱和两种情况。结果表明:边缘缺陷改变了电子的输运行为。对于完整的石墨烯纳米带,两种自旋的电子在费米能级附近是完全简并的;对于含有边缘缺陷的石墨烯纳米结,两种自旋的电子在费米能级附近的很大能量范围内表现出自旋分离。电子局域态密度可进一步说明这种输运行为。这些纳米结可产生与自旋相关的极化电流。特别对于未饱和的缺陷结,在任何偏压下都有较高的自旋滤波效率。 First-principles calculation was performed to investigate the transport properties of edge-defect junctions of graphene with H-terminated or bare edges, which were generated by removing edge carbon atoms from a perfect ribbon. The edge defect changes the electronic transport behavior of a zigzag graphene nanoribbon from spin-degenerated for a perfect ribbon to highly spin-polarized for edge-defective ones at the Fermi level. The electronic local density of states isosurface calculations could help understand the transport results. These junctions could generate spin-polarized currents. Especially, the bare edge-defect junction has a high spin filter efficiency regardless of the external bias. This behavior suggests a Dossible use of the edge-defective ~raDhene in a snin filter system.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2012年第3期181-187,共7页 New Carbon Materials
基金 National Science Foundation of China(10832005)~~
关键词 石墨烯纳米带 边缘缺陷结 自旋输运 CJraphene nanoribbon Edge-defect junction Spin-dependent transport
  • 相关文献

参考文献27

  • 1Han M Y,(O)zyilmaz B,Zhang Y. Energy band-gap engineering of graphene nanoribbons[J].Physical Review Letters,2007.206805.doi:10.1103/PhysRevLett.98.206805.
  • 2Li X L,Wang X R,Zhang L. Chemically derived ultrasmooth graphene nanoribbon semiconductors[J].Science,2008.1229-1232.doi:10.1126/science.1150878.
  • 3Miyamoto Y,Nakada K,Fujita M. First-principles study of edge states of H-terminated graphitic ribbons[J].Physical Review B:Condensed Matter,1999.9858-9861.
  • 4Lee H,Son Y W,Park N. Magnetic ordering at the edges of graphitic fragments:magnetic tail interactions between the edse-localized states[J].Physical Review B:Condensed Matter,2005.174431.doi:10.1103/PhysRevB.72.174431.
  • 5Son Y W,Cohen M L,Louie S G. Energy gaps in graphene nanoribbons[J].Physical Review Letters,2006.216803.doi:10.1103/PhysRevLett.97.216803.
  • 6Barone V,Hod O,Scuseria G E. Electronic structure and stability of semiconducting graphene nanoribbons[J].Nano Letters,2006.2748-2754.doi:10.1021/nl0617033.
  • 7Abanin D A,Lee P A,Levitov L S. Spin-filtered edge states and quantum Hall effect in graphene[J].Physical Review Letters,2006.176803.doi:10.1103/PhysRevLett.96.176803.
  • 8Areshkin D A,Gunlycke D,White C T. Ballistic transport in graphene nanostrips in the presence of disorder:importance of edge effects[J].Nano Letters,2007.204-210.
  • 9Cresti A,Grosso G,Parravicini G P. Numerical study of electronic transport in gated graphene ribbons[J].Physical Review B:Condensed Matter,2007.205433.doi:10.1103/PhysRevB.76.205433.
  • 10Ezawa M. Peculiar width dependence of the electronic properties of carbon nanoribbons[J].Physical Review B:Condensed Matter,2006.045432.doi:10.1103/PhysRevB.73.045432.

同被引文献2

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部