期刊文献+

骨涎蛋白在不同类型种植体骨界面改建中的变化 被引量:3

Expression of bone sialoprotein in the process of implant-bone interface remodeling with different implants
下载PDF
导出
摘要 目的:比较埋植型与非埋植型种植体在义齿修复受载后,种植体-骨界面中骨涎蛋白表达的变化。方法:选用纯系Beagle犬8只,在其下颌左右两侧分别植入埋植型与非埋植型种植体各3枚,每侧第一枚不作义齿修复,用于对照,其余各枚均采用固定金属全冠行种植义齿修复,分别于修复后2、4、8、12周各处死2只动物,取下颌骨相应骨段,于每个种植体周围10 mm处制作颊舌向纵行石蜡切片(片厚4μm),采用免疫组化染色方法检测种植体-骨界面骨涎蛋白表达情况。结果:两对照组(未修复组)种植体-骨界面组织中骨涎蛋白均呈弱阳性表达,且各时间点表达均无明显差异(P>0.05)。而两实验组(修复受载后)种植体-骨界面组织中骨涎蛋白表达的阳性强度均随观察时间延长而增加,8周时达高峰,12周时出现回落;同一时间点内埋植型与非埋植型种植体相比,无论是对照组还是实验组,各时间点内的骨涎蛋白表达程度均无显著性差异(P>0.05)。结论:埋植型和非埋植型种植体在义齿修复受载后,所承受的机械负荷均能刺激种植体-骨界面骨涎蛋白表达发生规律性变化,促进其界面的改建;且埋植型和非埋植型种植义齿受载后其界面的改建之间无显著性差异(P>0.05)。 AIM : To compare the expression of bone sialoprotein (BSP) in different implant-bone interface after loading of submerged and nonsubmerged implant dentures. METHODS:Eight adult inbred beagle dogs were used to build the animal model. 3 submerged and 3 nonsubmerged implants were implanted into each side of the mandible respectively. The first implant at each side served as control and no denture was made. The remaining implants were fixed by metal full crown. 2, 4, 8, and 12 weeks after crown restoration, 2 dogs were sacrificed respectively. The cor- responding mandible bone segments were taken. Buccolingual longitudinal paraffin sections, about 10 mm to each im- plant ,were made (the thickness of each piece was 4 p,m). Immunohistochemistry was used to observe the dynamic ex- pression of bone sialoprotein in the implant-bone interface. RESULTS: In the two control groups (without loading), weak expression of BSP in the implant-bone interface was observed. The expression level was not significantly changed at different time points. In the two experimental groups (with loading), strong BSP expression in the implant-bone interface was observed and BSP expression enhanced with loading time. Peak expression was at 8-week and afterwards, BSP expression decreased and returned to the level of the control group at 12-week. No obvious difference of BSP expression in the implant-bone interface was observed between the submerged and nonsubmerged implants at the same time points. CONCLUSION: The mechanical loads from the submerged and nonsubmerged implant denture both can stimulate the expression of BSP in the implant-bone interface, promoting the interface remodeling. Furthermore, there is no distinct difference in the implant-bone interface remodeling after loading of submerged and nonsubmerged implants.
出处 《牙体牙髓牙周病学杂志》 CAS 北大核心 2012年第6期319-322,共4页 Chinese Journal of Conservative Dentistry
基金 广东省科技计划项目资助(2008B030301246) 广州市科技支撑计划项目资助(2008Z1-E321)
关键词 埋植型 非埋植型 种植体-骨界面 受载 改建 骨涎蛋白 submerged nonsubmerged implant-bone interface ioading remodeling bone sialoprotein
  • 相关文献

参考文献8

  • 1袁林,马轩祥,金岩,夏风,王新木,胡开进,李锋.研究种植义齿骨界面改建的beagle犬动物模型的建立[J].实用口腔医学杂志,2004,20(3):312-315. 被引量:16
  • 2O' Toole GC, Salih E, Gallagher C, et al. Bone sialoprotein - coated femoral implants are osteoinductive but mechanically com- promised[J]. J Orthop Res, 2004,22(3) :641 -646.
  • 3Hosoya A, Ninomiya T, Hiraga T. Alveolar bone regeneration of subcutaneously transplanted rat molar[ J]. Bone, 2008,42 (2) : 350 - 357.
  • 4Brand RA,Stanford CM. How connective tissues temporally process mechanical stimuli[J]. Med Hypotheses ,1994,42(2):99 -104.
  • 5Burger EH, Veldhuijzen JP. Influence of mechanical fators on bone formation, resorption and growth in vitro [ M ]. In : Hall K. Bone Growth. Melbourne. CRC Press, 1993.
  • 6Moil S, Burr M. Increased cortical remodeling following fatigue microdamage[ J]. Bone, 1993, 14:103 - 109.
  • 7Gordon JA, Tye CE, Sampaio AV, et al. Bone sialoprotein ex- pression enhances osteoblast differentiation and matrix minerali- zation in vitro [ J ]. Bone, 2007,41 (3) :462 - 473.
  • 8Gordon JA, Hunter GK, Goldberg HA. Activation of the mitogen - activated protein kinase pathway by bone sialoprotein regulates osteoblast differentiation [ J ]. Cells Tissues Organs, 2009, 189 (1 -4) :138 -143.

二级参考文献8

  • 1Parr GR, Gardner LK, Steflik DE, et al. Comparative implant research in dogs: A prosthodontic model. J Prosthet Dent, 1992, 68 (3): 509
  • 2Persson LG, Ericsson Ⅰ, Berglundh T, et al. Osseintegration following treatment of peri-implantitis and replacement of implant components. An experimental study in the dog. J Clin Periodontol, 2001,28 (3): 258
  • 3Misch CE. Implant Dentistry. Dent Today, 2002, 21 (11):66
  • 4Ciochon RL, Nisbett RA, Corruccini RS. Dietary consistency and craniofacial development related to masticatory function in minipigs. J Craniofac Genet Dev Biol, 1997, 7(2): 96
  • 5Richter EJ. In vivo vertical forces on implants. Iht J Oral Maxillofac Impl, 1995, 10(1): 99
  • 6Strom D, Holm S. Bite-force development, metabolic and circulatory response to electrical stimulation in the canine and porcine masseter muscles. Arch Oral Biol, 1992, 37 (12):997
  • 7Rubin CT, McLeod KJ. Promotion of bone ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Orthop, 1994,298(1): 165
  • 8Carlsson GE, Haraldson T. Functional response. In:Branemark PI, Zarb GA, Albrektsson T (eds). Tissue-lntegrated Prostheses. Chicago: Quintessence, 1985.55~163

共引文献15

同被引文献41

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部