期刊文献+

基于粗糙集的一类彩色验证码识别研究 被引量:1

A Recognition Algorithm of Colored Image CAPTCHA based on Rough Set
下载PDF
导出
摘要 文章根据一类图片验证码的字符颜色、大小、字符间位置关系,使用粗糙集的方法将验证码图片中的字符分割出来,再使用AdaBoost算法进行训练,将分割得到的字符识别出来。经实验证明,该算法对该类彩色验证码,无需很高的训练样本,即具有很高的识别率和速率,基本可以满足实时应用。 A new Recognition Algorithm of Colored hnage CAPTCHA(Completely Automated Public Turing test to tell Computers and Humans Apart, CAPTCHA) was introduced in this article. At first, using Rough Set method to detect the characters, by attrib of characters of colored Image CAPTCHA which is color, size and, position relationship between the characters, then use the AdaBoost classifier to identification the characters was. And experiments show that the algorithm is run good for that type of color code, and need not lots of training samples, which has a high recognition rate and speed, and is close to real-time applications.
作者 陈令
出处 《信息网络安全》 2012年第6期26-28,43,共4页 Netinfo Security
关键词 彩色图片验证码 ADABOOST分类器 粗糙集 CAPTCHA AdaBoost classifier Rough Set
  • 相关文献

参考文献8

  • 1Pawlak Z. Rough sets:Theoretical Aspects of Reasoning about Data[M].Boston,MA:Kluwer Academic Publishers,1991.
  • 2Jan G.Bazan,Hung S on Nguyen,Sinh Hoa Nguyen. Rough Set Algorithms in Classification Problem[M].Boston:K lower Academic Publishers,2003.
  • 3Bazan J G,Skowron A,Synak P. Dynamic Reducts as a Tool for Extracting Laws from Decisions Tables[A].Berlin:S pringer2Verlag,1994.3462355.
  • 4Zdzislaw Pawlak. Rough sets and intelligent data analysis[J].Information Sciences,2002,(1-4):1-12.
  • 5Marzena Kryszkiewicz. Rough set approach to incomplete information systems[J].Information Sciences,1998,(1-4):39-49.
  • 6代建华,李元香.粗集中属性约简的一种启发式遗传算法[J].西安交通大学学报,2002,36(12):1286-1290. 被引量:32
  • 7刘清,郑非,江娟,刘斓.带Rough相等关系词的Rough逻辑系统及其推理[J].计算机学报,2003,26(1):39-44. 被引量:3
  • 8陈令,汪亚明.基于肤色平滑度的人脸分割[J].测试技术学报,2004,18(1):60-64. 被引量:4

二级参考文献16

  • 1[1]Pawlak Z. Rough Sets-Theoretical Aspects of Reasoning about Data. Kluwer: Academic Publishers, 1992
  • 2[2]Chang C L, Lee R C T. Symbolic Logic and Mechanical Theorem Proving. New York: Academic Press, 1973
  • 3[4]Banerjee M, Chakraborty M K. Rough algebra, Institute of Computer Science, Warsaw University of Technology, Warsaw: ICS Research Report 47/93, 1993
  • 4[5]Stepaniuk J. Rough relations and logics. In: Polkowsk L,Skowron A eds. Rough Sets in Knowledge Discover I, Heideherg:Physica Verlag, 1998, 248~260
  • 5[6]Liu Q. λ-Level rough equality relation and the inference of rough paramodulation. In: Ziarko W, Yao Y Y eds. Lecture Notes in Artificial Intelligence 2005. Berlin: Springer-Verlag, 2001,462~469
  • 6[7]Lin T Y, Liu Q. First order rough logic Ⅰ: Approximate reasoning via rough sets. Fundamenta Informaticae, 1996,27(2~3):137~154
  • 7[8]Liu Q. The resolution for rough proposotional logic with lower (L)and upper(H) approximate operators. In:Zhong N, Skow ron A, Ohsuga S eds. Lecture Notes Artificial Intelligence 1711. Berlin:Springer-Verlag, 1999,352~356
  • 8[9]Liu Q. The OI--Resolution of operator rough logic. In:Polkowsk L, Skowron A eds. Lecture Notes Artificial Intelligence 1424. Berlin:Springer Verlag, 1998,432~435
  • 9[12]Nakamara A. Graded modalities in rough logic. In: Polkaowski L, Skowron A eds. Rough Sets in Knowledge Discovery 1.Heidelberg:Physica-Verlag, 1998, 192~208
  • 10贾云德.机器视觉[M].北京:科学出版社,2002.155-157.

共引文献36

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部