期刊文献+

陶瓷基复合材料低循环拉—拉疲劳寿命预测 被引量:4

Low Cycle Tensile-Tensile Fatigue Life Prediction of Ceramic Matrix Composites
下载PDF
导出
摘要 采用细观力学方法建立预测纤维增强陶瓷基复合材料低循环拉—拉疲劳寿命的模型。该模型考虑初始加载到疲劳峰值应力时,基体出现裂纹,纤维/基体界面发生脱粘,部分纤维将发生断裂,并采用统计方法得到初始加载到峰值应力时的纤维失效体积分数;在后续循环过程中,考虑纤维相对基体在界面脱粘区滑移造成界面切应力下降,纤维失效模型与Evans界面磨损模型相结合,得到循环过程中纤维失效体积分数与界面切应力、循环数之间的关系;当纤维失效导致剩余强度下降,并小于疲劳峰值应力时,判断材料失效。采用剩余强度方法对陶瓷基复合材料的S-N曲线进行预测,并将预测的S-N曲线与试验数据进行对比,结果吻合较好。 A micro mechanics approach to predict low cycle tensile-tensile fatigue life of fiber reinforced ceramic matrix composites is presented. When first loading to fatigue maximum stress, matrix cracking, fiber/matrix interface de-bonding occur, and partial fibers fracture. The statistical approach is used to determine the percentage of fracture fibers. Upon cycling, fiber slips relative to matrix in the interface de-bonding region, which makes interface shear stress decreased. By combing fiber failure model and interface wear model, the relationship between the percentage of fiber failure and interface, or cycles, is determined. Residual strength of ceramic matrix composites decreases as fiber failure. When residual strength is lower than fatigue maximum stress, the material fails. The residual strength approach is used to predict the S-N curve of ceramic matrix composites, the S-N curve agrees well with experiment data.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第12期31-36,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(51075204) 航空科学基金(2009ZB52028) 南京航空航天大学基本科研业务费专项科研(NZ2012106)资助项目
关键词 陶瓷基复合材料 寿命预测 纤维失效 界面磨损 S-N曲线 Ceramic matrix composites Life prediction Fiber failure Interface wear S-N curve
  • 相关文献

参考文献15

  • 1EVANS A G, ZOK F W,MCMEEKING R M. Fatigue of Ceramic Matrix Composites[J]. Acta Metall Mater,1995,43(3):859-875.
  • 2PREWO K M. Fatigue and stress rupture of silicon carbide fiber-reinforced glass-ceramics[J]. Journal of Materials Science,1987,22(8):2695-2701.
  • 3LEE S S,STINCHCOMB W W. Damage mechanisms of cross-ply Nicalon/CAS II laminate under cyclic tension [J]. Ceramic Engineering and Science Proceedings,1994,15(4):40-48.
  • 4ZHU S,MIZUNO M,KAGAWA Y,et al. Monotonic tension,fatigue and creep behavior of SiC-fiber- reinforced SiC-matrix composites:A review [J]. Composites Science and Technology,1999,59(6):833-851.
  • 5THOULESS M D,EVANS A G. Effects of pull-out on the mechanical properties of ceramic-matrix composites[J]. Acta Metall.,1988,36(3):517-522.
  • 6HOLMES J W,CHO C. Experimental observation of frictional heating in fiber-reinforced ceramics [J]. Journal of American Ceramic Society,1992,75(4):929-938.
  • 7ZAWADA L P,BUTKUS L M,HARTMAN G A. Room temperature tensile and fatigue properties of silicon carbide fiber reinforced aluminosilicate glass[J]. Ceramic Engineering and Science Proceedings,1990,1(9-10):1592-1606.
  • 8KUO W S. Damage of multi-directionally reinforced ceramic matrix composites[D]. Delaware:University of Delaware,1992.
  • 9EDDY V,MARTINE W,OMER Van Der B. Influence of the laminate lay-up on the fatigue behavior of SiC fiber/BMAS matrix composites[J]. Composites Part A, 1999,30(5):623-635.
  • 10KARANDIKAR P G. Evolution of damage and mechanical response in ceramic matrix composites under monotonic and fatigue loadings:Experimental characterization and modeling[D]. Delawar:University of Delaware,1992.

二级参考文献48

  • 1杨铁成,陈凌,范志超,陈学东,蒋家羚.1.25Cr0.5Mo钢高温疲劳蠕变交互作用的寿命预测[J].压力容器,2005,22(9):8-12. 被引量:12
  • 2范志超,陈学东,陈凌,蒋家羚.基于延性耗竭理论的疲劳蠕变寿命预测方法[J].金属学报,2006,42(4):415-420. 被引量:22
  • 3Zok F W, Spearing S M. Matrix crack spacing in brittle matrix composites[J].Acta Metall Mater, 1992, 40(8):2033- 2043.
  • 4Curtin W A. Theory of mechanical properties of ceramic -matrix composites[J]. J American Ceram Soc, 1991, 74(11) : 2837-2845.
  • 5Pryce A W, Smith P A. Matrix cracking in unidirectional ceramic matrix composites under quasi-static and cycle loading [J]. Acta Mater, 1992, 41(4): 1269-1281.
  • 6Ahn B K, Curtin W A. Strain and hysteresis by stochastic matrix cracking in ceramic matrix composites[J]. Journal of Mechanics Physical Solids, 1997, 45(2):177-209.
  • 7Kuo W S. Damage of multi-directionally reinforced ceramic matrix composites[D]. Newark: University of Delaware, 1992.
  • 8Douglas S B, Spearing S M, Evans A G. Damage mechanisms and the mechanical properties of a laminated 0/90 ceramic/ matrix composite[J]. J Am Ceram Soc, 1992, 75(12) : 3321- 3330.
  • 9Ramakrishna T B. Properties of silicon carbide fiber reinforced silicon nitride matrix composites, NASA, Technical Report 88 -C-027 [R]. Cleveland, Ohio: NASA, 1998.
  • 10HOFFMAN M E, HOFFMAN P C, Current and future fatigue life prediction methods for aircraft structures[J]. Naval Research Reviews, 1998, 50(4): 55-68.

共引文献37

同被引文献45

  • 1郭洪宝,贾普荣,王波,矫桂琼,曾增.基于迟滞行为的2D-SiC/SiC复合材料组份力学性能分析[J].力学学报,2015,47(2):260-269. 被引量:7
  • 2张立同,成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报,2007,24(2):1-6. 被引量:209
  • 3HUANG Xiaoping, TORGEIR M, CUI Weicheng. An engineering model of fatigue crack growth under variable amplitude loading[J]. International Journal of Fatigue, 2008, 30(1): 2-10.
  • 4ZHAO Tianwen, ZHANG Jixi, JIANG Yanyao. A study of fatigue crack growth of 7075-T651 aluminum alloy[J]. International Journal of Fatigue, 2008, 30(7): 1169-1180.
  • 5KALNAUS S, FAN F, VASUDEVAN A K, et al. An experimental investigation on fatigue crack growth of AL6XN stainless steel[J]. Engineering Fracture Mechanics, 2008, 75(8): 2002-2019.
  • 6JONES R, MOLENT L, KRISHNAPILAI K. An equivalent block method for computing fatigue crack growth[J]. International Journal of Fatigue, 2008, 30(9): 1529-1542.
  • 7SCHOLLMANN M, FULLAND M, RICHARD H A. Development of a new software for adaptive crack growth simulations in 3D structures[J]. Engineering Fracture Mechanics, 2003, 70(2): 249-268.
  • 8FURUKAWA C H, BUCALEM M L, MAZELLA I J G. On the finite element modeling of fatigue crack growth in pressurized cylindrical shells[J]. International Journal of Fatigue, 2009, 31(4): 629-635.
  • 9YONG J O, SOO W N. Low-cycle fatigue crack advance and life prediction[J]. Journal of Materials Science, 1992, 27. 2019-2025.
  • 10CASTRO J T P. Singular and non-singular approaches forpredicting fatigue crack growth behavior[J]. International Journal of Fatigue, 2005, 27: 1366-1388.

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部