摘要
To correct the range walk through resolution cell in Doppler beam sharpening (DBS) imaging, a new DBS imaging algorithm based on Keystone transform is proposed. Without the exact values of the movement parameters and the look angle of the radar platform in the multi-targets environment, a linear trans- form on the received data is employed to correct different range walk values accurately under the condition of Doppler frequency ambiguity in this algorithm. This method can realize the cohe- rent integration in azimuth dimension and improve the azimuth resolution. In order to reduce the computational burden, a fast implementation of Keystone transform is used. Theoretical anal- ysis and simulation results demonstrate the effectiveness of the new algorithm. And through comparing the computational load of the fast implementation with several other algorithms, the real-time processing ability of the proposed algorithm is superior to that of other algorithms.
To correct the range walk through resolution cell in Doppler beam sharpening (DBS) imaging, a new DBS imaging algorithm based on Keystone transform is proposed. Without the exact values of the movement parameters and the look angle of the radar platform in the multi-targets environment, a linear trans- form on the received data is employed to correct different range walk values accurately under the condition of Doppler frequency ambiguity in this algorithm. This method can realize the cohe- rent integration in azimuth dimension and improve the azimuth resolution. In order to reduce the computational burden, a fast implementation of Keystone transform is used. Theoretical anal- ysis and simulation results demonstrate the effectiveness of the new algorithm. And through comparing the computational load of the fast implementation with several other algorithms, the real-time processing ability of the proposed algorithm is superior to that of other algorithms.
基金
supported by the Basic Research of the National Department of Defense (A2220060054)
the Foundation of Shanghai Aerospace Science and Technology