摘要
本文引进了集对族■=<(x_i,y_i):i∈I>的横截概念。证明了■之所有部分横截的集合形成联系系统。这一结果与 Edmonds 和 Fulkerson 关于拟阵与横截的著名结果类似。本文还给出了■具有某种表示系统的充要条件、Hall定理(集对族情形)以及对称联系系统的 Rado 定理。
The concept of transversals is introduced for family ■=〈(x_i,y_i): i∈I〉 of set pairs.It is proved that the collection of partial transversals of ■ forms a linking system.This result is similar to a well-known theorem of Edmonds and Fulkerson about matroids and transversals. Furthermore a necessary and sufficient condition for ■ to have certain system of representatives,Hall theorem (for families of set pairs),and Rado theorem for symmetric linking systems are also presented in this paper.
出处
《贵州大学学报(自然科学版)》
1989年第3期12-17,共6页
Journal of Guizhou University:Natural Sciences
关键词
拟阵
联系系统
横截理论
matroids
linking systems
transversals