期刊文献+

不同还原方法对氧化还原法制备的功能化石墨烯的影响 被引量:4

Effect of different reduction methods on functional graphene prepared by redox method
下载PDF
导出
摘要 利用改进的Hummer法制备氧化石墨,然后分别采用化学还原法和热还原法将氧化石墨还原制得功能化石墨烯。采用X-射线衍射(XRD)、扫描电镜(SEM)、傅立叶红外(FT-IR)和热重(TG)等表征手段对功能化石墨烯制备过程中的原料石墨、氧化石墨和石墨烯进行了表征。结果表明,化学还原法和热还原法都能还原氧化石墨制得功能化石墨烯,但还原程度不同。与化学还原法相比,热还原法制备的功能化石墨烯含有较少含氧基团,且工艺简单,耗时少,是一种高效制备大量功能化石墨烯的方法。 Functional graphene was prepared by chemical reduction or thermal reduction of graphite oxide synthe- sized by an improved Hummer' s method. The graphite, graphite oxide and functional graphene were characterized by X-ray diffraction(XRD) ,scanning electron microscopy(SEM), FT-IR and thermogravimetry(TG). The results showed that the functional graphene can be prepared by chemical reduction method and thermal reduction method, respectively, but with dif- ferent reduction degrees. Compared with the chemical reduction method, the thermal reduction method was a fast and effi- cient way to prepare the functional graphene on a large scale because of its simple process, time saving and lower content of oxygen containing groups.
出处 《化工新型材料》 CAS CSCD 北大核心 2012年第6期63-65,共3页 New Chemical Materials
基金 国家自然科学基金(21076048) 广东省自然科学基金(S2011040005569) 广东省科技计划项目(2010B010900039) 广州市科技计划项目(2009J1-C431-1)
关键词 功能化石墨烯 氧化-还原法 化学还原法 热还原法 functional graphene,oxidation-reduction method, chemical reduction, thermal reduction
  • 相关文献

参考文献8

二级参考文献243

共引文献463

同被引文献32

  • 1田悦,杜军保.二硫键和巯基在蛋白质结构功能中的作用及分析方法[J].实用儿科临床杂志,2007,22(19):1499-1501. 被引量:43
  • 2LI Y, HAN S M, ZHU X L, et al. Effect of CuO addition on electrochemical properties of AB3-type alloy electrodes for nickel/metal hydride batteries[J]. Journal of Power Sources, 2010, 195(1): 380-383.
  • 3WU J B, TU J P, YU Z, et al. Electrochemical investigation of carbon nanotubes as additives in positive electrodes of Ni/MH batteries[J]. Journal of the Electrochemical Society, 2006, 153(10): A1847-A1851.
  • 4LI X F, XIA T C, DONG H C, et al. Preparation of nickel modified activated carbon/AB5 alloy composite and its electrochemical hydrogen absorbing properties[J]. International Journal of Hydrogen Energy, 2013, 38(21): 8903-8908.
  • 5LI X, WANG L, DONG H, et al. Electrochemical hydrogen absorbing properties of graphite/AB5 alloy composite electrode[J]. Journal of Alloys and Compounds, 2012, 510(1): 114-118.
  • 6PENG X Y, LIU B Z, FAN Y P, et al. Microstructures and electrochemical characteristics of La0.7Ce0.3Ni4.2-Mn0.9-xCu0.37-(V0.81Fe0.19)x hydrogen storage alloys[J]. Electrochimica Acta, 2013, 93(4): 207-212.
  • 7FAN Y P, LIU B Z, ZHANG B Q, et al. Microstructures and electrochemical properties of LaNi3.55Co0.2-xMn0.35Al0.15Cu0.75(Fe0.43B0.57)x (x = 0-0.20) hydrogen storage alloys[J]. Material Chemistry and Physics, 1998, 138(S2/S3): 803-809.
  • 8NOTTEN P H L, HOKKELING P. Double-phase hydride forming compounds: A new class of highly electrocatalytic materials[J]. Journal of Electrochemical Society, 1991, 138(7): 1877-1885.
  • 9RATNAKUMART B V, WITBAM C, BOWMAN R C, et al. Electrochemical studies on LaNi5-xSnx metal hydride alloys[J]. Journal of Electrochemical Society, 1996, 143(8): 2578-2584.
  • 10KURIYAMA N, SAKAI T, MIYAMURA H, et al. Electrochemical impedance spectra and deterioration mechanism of metal hydride electrodes[J]. Journal of Electrochemical Society, 1992, 139(7): L72-L73.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部