期刊文献+

基于隐马尔科夫模型的P2P流识别技术 被引量:9

Hidden Markov model based P2P flow identification technique
下载PDF
导出
摘要 为了实时、准确地识别多种P2P应用流,提出了基于隐马尔科夫模型(HMM,hidden Markov model)的P2P流识别技术。该技术利用分组大小、到达时间间隔和到达顺序等特征构建流识别模型,采用离散型随机变量刻画HMM状态特征;提出了能同时识别多种P2P应用流的架构HMM-FIA,设计了HMM的状态个数选择算法。在校园网中架设可控实验环境,使用HMM-FIA识别多种P2P流,并与已有识别方法进行比较,结果表明采用离散型随机变量能降低模型建立时间,提高识别未知流的实时性和准确性;HMM-FIA能同时识别多种P2P协议产生的分组流,并能较好地适应网络环境变化。 To identify various P2P flows accurately in real-time,a hidden Markov model(HMM) based P2P flow identification technique was proposed.This approach made use of packet size,inter-arrival time and arrival order to construct flow identification model,in which discrete random variable was used to depict the characteristics of HMM state.A framework called HMM-FIA was proposed,which could identify various P2P flows simultaneously.Meanwhile,the algorithm for selecting the number of HMM state was designed.In a controllable experimental circumstance in the campus network,HMM-FIA was utilized to identify P2P flows and was compared with other identification methods.The results show that discrete random variable can decrease the model constructing time and improve the time-cost and accuracy in identifying unknown flows,HMM-FIA can correctly identify the packet flows produced by various P2P protocols and it can be adaptive to different network circumstance.
出处 《通信学报》 EI CSCD 北大核心 2012年第6期55-63,共9页 Journal on Communications
基金 国家高技术研究发展计划("863"计划)基金资助项目(2007AA01Z418) 江苏省自然科学基金资助项目(BK2009058) 国家自然科学基金资助项目(61072043)~~
关键词 对等方到对等方 有限状态机 流识别 隐马尔科夫模型 peer to peer finite state machine flow identification hidden Markov model
  • 相关文献

参考文献17

  • 1MCGREGOR A, HALL M, LORIER P, et al. Flow clustering using machine learning techniques[J]. Lecture Notes in Computer Science, 2004, 3015: 205-214.
  • 2MOORE A W, PAPAGIANNAKI K. Toward the accurate identifica- tion of network applications[A]. Proceedings of the 6th Passive and Active Measurement Workshop[C]. Berlin, 2005.
  • 3ERMAN J, ARLITT M, MAHANTI A. Traffic classification usingclustering algorithms[A]. Proceedings of the 2006 SIGCOMM Work- shop on Mining Network Data[C]. Pisa, Italy, 2006.
  • 4ALBERTO D, WALTER D, ANTONIO E et al. Classification of network traffic via packet-level hidden Markov models[A]. GLOBE- COM 2008[C]. New Orleans, 2008.
  • 5ZANDER S, NGUYEN T, ARMITAGE G. Self-learning IP traffic classification based on statistical flow characteristics[A]. Proceedings of the 6th International Workshop on Passive and Active Network Measurement[C]. Boston, Masschusetts: Springer-Verlag Berlin, 2005.
  • 6MENA A, HEIDEMANN J. An empirical study of real audio traf- tic[A]. Proceedings of IEEE INFOCOM 2000[C]. Israel, 2000.
  • 7WRIGHT C, MONROSE F, MASSON (i HMM profiles for network traffic classification[A]. Proceedings of the 2004 ACM Workshop on Visualization and Data Mining for Computer Security[C]. New York, 2004.
  • 8MOORE D, KEYS K, KOGA R, et al. The CoralReef software suite as a tool for system and network administrators[A]. Proceedings of the 15th USENIX Conference on Systems Administration[C]. San Diego: USENIX Association, 2001.
  • 9SEN S, SPATSCHECK O, WANG D. Accurate, scalable in-network identification of P2P traffic using application signatures[A]. The 13th International Conference on World Wide Web[C]. New York, 2004.
  • 10ROUGHAN M, SEN S, SPATSCHECK O, et al. Class-of-service mapping for QoS: a statistical signature-based approach to IP traffic classification[A]. SIGCOMM 2004[C]. Italy, 2004.

二级参考文献21

  • 1Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: Proc. of the PAM 2005. 2005.41-54.
  • 2Kim MS, Won Y J, Hong JWK. Application-Level traffic monitoring and an analysis on IP networks. ETRI Journal, 2005,27(11): 22-42. [doi: 10.4218/etrij.05.0104.0040].
  • 3Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. In: Proc. of the ACM SIGCOMM 2005.2005.229-240.
  • 4Erman J, Arlitt M, Mahanti A. Traffic classification using clustering algorithms. In: Proc. of the ACM SIGCOMM 2006. 2006. 281-286.
  • 5Moore AW, Zuev D. Internet traffic classification using Bayesian analysis teehniques. In: Proc. of the ACM SIGMETRICS 2005. 2005.50-60.
  • 6Auld T, Moore AW, Gull SF. Bayesian neural networks for Intemet traffic classification. IEEE Trans. on Neural Networks, 2007, 18(1):223-239. [doi: 10.1109/TNN.2006.883010].
  • 7Li W, Canini M, Moore AW, Bolla R. Efficient application identification and the temporal and spatial stability of classification schema. Computer Networks, 2009,53(6):790-809. [doi: 10.1016/j.comnet.2008.11.016].
  • 8Witteri IH, Frank E. Data Mining: Practical Machine Learning Tools and Techniques. 2nd ed., San Francisco: Morgan Kaufmarm Publishers, 2005.
  • 9Cisco. Cisco lOS NetFlow introduction. 2006. http://www.cisco.com/en/US/products/ps6601/products_ios_.protocol_group_home. html.
  • 10Claffy KC. Intemet traffic characterization [Ph.D. Thesis]. San Diego: University of California, 1994.

共引文献5

同被引文献83

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部